1 / 30

Observational Signatures of Relativistic and Newtonian Shock Breakouts Ehud Nakar

Observational Signatures of Relativistic and Newtonian Shock Breakouts Ehud Nakar Tel Aviv University Re’em Sari (Hebrew Univ.) Gilad Svirsky (Tel Aviv Univ.) Tomer Goldfriend (Hebrew Univ.) Death of Massive Stars Nikko, Mar 16, 2012. Studies of shock breakouts (partial list)

gale
Download Presentation

Observational Signatures of Relativistic and Newtonian Shock Breakouts Ehud Nakar

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Observational Signatures of Relativistic and Newtonian Shock Breakouts Ehud Nakar Tel Aviv University • Re’em Sari (Hebrew Univ.) • GiladSvirsky (Tel Aviv Univ.) • TomerGoldfriend(Hebrew Univ.) • Death of Massive Stars • Nikko, Mar 16, 2012

  2. Studies of shock breakouts (partial list) • Newtonian: • Shock breakout • Colgate 74; Falk 78; Imshennik and Nadyozhin 88; Matzner & McKee 99; Katz et. al. 10; Nakar & Sari 10; Ofek et al 11, Balberg & Leob 11, Chevalier & Irwin 11 & 12, Svirsky, EN & Sari 12… • Planar expansion • Piro et. al. 10, EN & Sari 10, Sapir et. al. 11, Katz et. al. 11, … • Spherical expansion • Chevalier 76, 92; Waxman et. al. 07; Chevalier & Fransson 08; Piro et. al. 10, Rabinak & Waxman 10; EN & Sari 10, … • Numerical simulations • Klein & Chevalier 78; Ensman & Burrows 92; Blinnikov et. al. 98, 03; Utrobin 07; Tominga et. al. 09, 11; Suzuki & Shigeyama 10; Dessart & Hillier 11; Couch et al 11; Moriya et al 11, Blinnikov & Tolstov 11, … • Relativistic: • Colgate 1968; Tan et al., 2001, Waxman et al., 2007, Katz et al., 2010, EN & Sari 2011

  3. Outline and Conclusions • Relativistic breakout (EN & Sari 11) • g-ray flare followed by X-ray extended emission • Must take place in: long GRBs, low-luminosity GRBs, IaSNe, Highly compact & energetic core collapse SNe • Plausible explanation for the entire emission (including g-rays) of ALL low-luminosity GRBs • Breakout through a dense wind (Svirski, EN & Sari 12) • Delayed (~10-50 SN rise time), bright (~1041-1043) x-ray to soft g-ray emission (See poster P-60) • WR and BSG core-collapse SNe(EN & Sari 10) • T>>Tblackbody(~1-10 keV) throughout the planar phase – minutes (WR) to ~20 min (BSG)

  4. Relativistic Shock Breakouts (GRBs, Super-energetic SNe, Type Ia SNe) EN & Sari 2011

  5. Relativistic shock breakout Main physical differences from Newtonian breakout: • Constant post shock rest frame temperature ~100-200 keV • Temperature dependent (pair) opacity • Significant post breakout acceleration Katz et. al., 10 Budnik et. al., 10 pairs TBB

  6. A flash of g-rays from shock breakout A quasi-spherical, windless relativistic breakout gbo– Breakout Lorentz factor Rbo – Breakout radius

  7. Relativisticbreakout relation Quasi-spherical, windless relativistic breakouts: Three observables: Tbo , tbo , Ebo Depend on two physical parameters: Rbo and gbo A test that each quasi-spherical, windless relativistic breakout must pass!

  8. Extremely energetic supernovae (e.g., SNe 2002ap, 2007bi; Mazzali et al 2002, Gal-Yam et al 2009) • Detectable by Swift and Fermi out to 3-30 Mpc • Events such as SN 2002ap (@ ~7 Mpc) may be detectable. Events such as 2007bi are too rare to detect.

  9. White dwarf explosions Type Ia and .Ia SNe and AIC Detectable within the Milky way

  10. Low luminosity GRBs • Some unique properties (very different than LGRBs): • Smooth light curve • Eg that is a small fraction of the total explosion energy • Mildly relativistic ejecta with energy comparable to Eg • Delayed X-ray emission, with energy comparable to Eg • Cannot be produced by successful jets (Bromberg, EN, Piran & Sari 11) All properties naturally explained by shock breakout Previously suggested by Colgate 1968, Kulkarni et al., 1998, Tan et al., 2001, Campana et al., 2006, Waxman et al., 2007, Wang et al., 2007, Katz et al., 2010

  11. Low luminosity GRBs Relativistic breakout relation

  12. BUT: the inferred Rbo>1013 cm Much larger than WR radii ! • However: Rbois where t~1 (e.g., mbo~10-5 Mo) • possible explanations • extended very low mass envelope • mass ejection just prior to explosion • effects of asphericity and/or a wind (needed to be calculated)

  13. Newtonian Breakout through a Thick Wind Svirski, EN & Sari 2011 (see also Chevalier & Irwin 12) See more details in poster P-60

  14. Hard component (X and g rays) free-free of ~60 keV electrons. Degraded by collisions with the unshocked wind and IC cooling Unshocked wind Soft component (opt-UV) free-free of heated unshocked wind. Main cooling source (via IC) of the hot shocked plasma Plasma heated by Collisionless shock (Katz et al. 11)

  15. Late breakout (typically 70 d < tbo) Early breakout (typically 1 d < tbo< 20 d) • Brightest emission • X-rays suppressed • May explain SN 2006gy • Excellent for X-ray searches • May explain PTF 09uj

  16. Early Temperature evolution of Regular core-collapse SNe from compact progenitors EN & Sari 10

  17. Shock temperature T is set by the ability to produce enough photons (Weaver 76; Katz et. al., 10) WR Non-thermal BSG RSG TBB Thermal Thermal equilibrium: vsh < 15,000 km/s Gas that is not in thermal equilibrium at the shock crossing will not gain it at later phases (EN & Sari 10)

  18. Observed Luminosity (Spherical breakout from stellar surface) Breakout Planar 1045 t-4/3 Luminosity [erg/s] Spherical t -0.17 - t -0.35 Breakout layer Deeper layers Time EN & Sari 10

  19. Temperature (Spherical breakout from stellar surface) Breakout Planar no thermal equilibrium t -1/3 - t -2/3 1000 BSG-WR Spherical T [eV] t -1/3 10 -100 t-0.6 RSG-BSG t-0.6 Time EN & Sari 10

  20. Optical-UV light curves Spherical Planar Breakout RSG BSG RSG WR WR EN & Sari 10 Far UV Optical

  21. X-ray light curve BSG WR RSG EN & Sari 10

  22. Conclusions • Relativistic breakout (EN & Sari 11) • g-ray flare followed by X-ray extended emission • Must take place in: long GRBs, low-luminosity GRBs, IaSNe, Highly compact & energetic core collapse SNe • Plausible explanation for the entire emission (including g-rays) of ALL low-luminosity GRBs • Breakout through a dense wind (Svirski, EN & Sari 12) • Delayed (~10-50 SN rise time), bright (~1041-1043) x-ray to soft g-ray emission (See poster P-60) • WR and BSG core-collapse SNe(EN & Sari 10) • T>>Tblackbody(~1-10 keV) throughout the planar phase – minutes (WR) to ~20 min (BSG)

  23. Some topics for future study • Newtonian breakout through a wind (Moriya et al 11, Ofek et al 11, Balberg & Leob 11, Chevalier & Irwin 11) • A-spherical breakout (Suzuki & Shigeyama 10, Couch et al., 11) • Effects of metallicity on the color temperature • Transition to collisionless shock (Katz et al 11) • Relativistic breakouts

  24. Wind shock breakout (… Moriya et al 11, Ofek et al 11, Balberg & Leob 11, Chevalier & Irwin 11, Katz et al 11) When? tw >10-30 Main observables: Larger breakout radius Brighter longer and colder High energy emission + Fast optical decay Shock transition from radiation to collisionless (Katz et al 11)

  25. Which explosions are expected to have relativistic breakouts? EN & Sari 11

  26. Comparison with numerical results Red supergiant R*=800 Rsun ; M*=18Msun ; E=1.2×1051 erg L/1.4

  27. Blue supergiant R*=45 Rsun ; M*=16Msun ; E= 1051 and 2.3 ×1051 erg Thermal eq. enforced

  28. Typical properties of shock breakout Breakout duration ~ R/c Breakout luminosity (all progenitors) ~ 1045 erg/s

  29. Breakout temperature

  30. Time = Mass (during the spherical phase) Time [sec] 102 103 104 105 106 Mass probed [M ] 10-6 10-4 0.01 1 10-8 breakout + planar recombination WR breakout + planar recombination BSG recombination breakout + planar RSG

More Related