1 / 27

祝: 新的一年里,身体倍儿棒!学习倍儿好!吃嘛嘛香 ! 干嘛嘛顺!

祝: 新的一年里,身体倍儿棒!学习倍儿好!吃嘛嘛香 ! 干嘛嘛顺!. 祝大家文章多多!. 2012 年 2 月 10 日. 流体模拟. SAS 沉淀过程喷射流场的 CFD 模拟. 导 师:张敏华 教授 孙永达 教授 报告人:王召亚. 课题研究前期准备工作. 汇报内容. 0. 课题简介. 1. 思路整理. 2. 模型建立. 3. 体系选择. 4. 进展计划.

freira
Download Presentation

祝: 新的一年里,身体倍儿棒!学习倍儿好!吃嘛嘛香 ! 干嘛嘛顺!

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 祝: 新的一年里,身体倍儿棒!学习倍儿好!吃嘛嘛香!干嘛嘛顺!

  2. 祝大家文章多多!

  3. 2012年2月10日 流体模拟 SAS沉淀过程喷射流场的CFD模拟 导 师:张敏华 教授 孙永达 教授 报告人:王召亚 课题研究前期准备工作

  4. 汇报内容 0. 课题简介 1. 思路整理 2. 模型建立 3. 体系选择 4. 进展计划

  5. 为使SAS微粒化产品形貌、粒度及分布可控,促进工业化生产,对其机理探索一直是研究的重点。一些研究者[ 6- 9]尝试利用相平衡、 液体射流、 传质和成核结晶等理论,并结合适当的简化假设[9]来解释SAS微粒形成控制机理,但因缺少超临界体系的基本物性数据和特定条件的限制,这些理论模型并不能普遍适用。 0 课题简介 01 课题背景 • SAS(超临界抗溶剂技术)技术在材料科学、食品加工和药物微细颗粒制备等方面成为研究的热点[1, 2]。药物微粉化是现代制药的基础,85%的化学及生物药以微粉为原料。 • SAS:操作温度低,有机溶剂残留少[3, 4],粒径小、分布窄,无污染、生物成分不易失活等优点[5]。 • 传统——研磨:尺寸分布太宽; • 喷雾干燥:溶质有效成分变性; • 流动能量粉碎:产品常常带有静电…… [1] Watson M S, Whitaker M J, Howdle S M , et al .Adv Mater [J] , 2002, 14(24) : 1802 -1804. [2] Martín A, Cocero M J. Adv Drug Deli Rev [J] ,2008, 60( 3) : 339-350. [3] Byrappa K, Ohara S, Adschiri T . Adv Dr ug Deli Rev[J] , 2008, 60(3) : 299-327. [4] Lee L Y, Lim L K, H ua J, et al . Chem Eng Sci [J] ,2008, 63(13) : 3366-3378. [5]Cocero M J, Ferrem S. [J]. Journal ofSupercritical Fluids, 2002, 22:237-245. [6] Mart A, Cocero M J. Adv Drug Deli Rev [J] ,2008, 60(3) : 339-350. [7] E. Reverchon, R. Adami, G. Caputo, I. De Marco. Spherical microparticles production by supercritical antisolvent precipitation:Interpretation of results[J]. The Journal of Supercritical Fluids, 2008, 47: 70–84. [8] Gokhale A, Khusid B, Dav e R N, et al. J of Supercri Fluids [J],2007, 43(2) : 341- 356. [9] Chvez F, Debenedett i P G, Luo J J, et al. Ind Eng Chem Res [J],2003, 42(13) : 3156 -3162.

  6. 关于微粒粒度及粒度分布控制的理论研究较少[10]。关于微粒粒度及粒度分布控制的理论研究较少[10]。 Nozzle exit >MCP >>MCP <MCP Jet break-up (atomization) Liquid droplets drying Diffusion controll Nucleation controll Conected nanoelements surface EMP Continuous surface EMP P>Pc,XCO2>XMCP[11] Hollow micro- particles with continuous surface Hollow micro- particles with connected nanoelements 02 课题研究进展 理论研究 [11] Mahshid Kalani,Robiah Yunus.Application of supercritical antisolvent method in drug encapsulation: a review. International Journal of Nanomedicine.

  7. 03 模型发展 SAS制粒模拟 SEDS制粒模拟 Lora等[12],首次对SAS过程建模,可以计算结晶产率 Jerzy Bałdyga等[16],SEDS,对(溶剂+反溶剂)互溶、不互溶分别建模,能够预测操作参数(T,P,VCO2,XNA)对PS的影响; Elvassore等[13],连续性方程包含进溶质的质量传递(三元),但仍假设液滴是静止的 Jerzy Bałdyga等[17],SEDS,讨论了超临界压力以上,宏观、介观、微观混合效应对PS、PSD的影响,并给出了过程放大规则。 A. Martín[14],实验数据,溶剂与反溶剂完全互溶体系,湍流(气体羽状喷射),能够预测PS及PSD; M. A. Tavares Cardoso等[15],低Re: 可以讨论溶液初始速度、初始浓度对PS、PSD的影响;判断沉淀室的几何构型对体系的适用性;证明了上浮效应(buoyancy effect)对微粒化设备的重要性; [12] M. Lora, A. Bertucco, I. Kikic, Simulation of the semicontinuous supercritical antisolvent recrystallization process, Ind. Eng. Chem.Res. 39 (5) (2000) 1487. [13] N. Elvassore, F. Cozzi, A. Bertucco, Modeling of particle formation in supercritical anti-solvent processes: diluted and concentrated regime,in: G. Brunner, I. Kikic, M. Perrut (Eds.), Proceedings of the Sixth International Symposium on Supercritical Fluids, Versailles, France,2003, p. 1635. [14] A. Martín, M. J. Cocero. Numerical modeling of jet hydrodynamics, mass transfer and crystallization kinetics in the supercritical antisolvent (SAS) process, J. of Supercritical Fluids, 32 (2004) 203–219 . [15] M.A. Tavares Cardoso, J.M.S. Cabral, A.M.F. Palavra,et al. CFD analysis of supercritical antisolvent (SAS) micronization of minocycline hydrochloride [J]. The Journal of Supercritical Fluids, 2008, 47 :247–258. [16] Jerzy Bałdyga, Dominik Kubicki, Boris Y. Shekunov, et al. Mixing effects on particle formation in supercritical fluids[J]. Chemical Engineering Research and Design, 2010, 8 8:1131–1141. [17] Jerzy Bałdyga, Rafał Czarnocki, Boris Y. Shekunov, et al. Particle formation in supercritical fluids—Scale-up problem[J]. chemical engineering research and design 8 8 (2010) 331–341.

  8. 实际意义 回流区影响的减弱: 使得到的产品微粒粒径更均一,产品粒径、形貌可控性提高,尤其是粒径量化可控性提高; 使设备利用度提高,对工业放大具有重要的经济意义; 考察喷嘴尺寸及喷入位置对流场的影响,及回流区对微粒PS及PSD的影响,进而探讨沉淀室结构对微粒粒度的影响。 理论意义 • SAS流体力学的理论研究: • 有助于认识沉淀过程及本质规律; • 有助于SAS微粒化过程的量化研究基础的奠定; • 有助于放大规律的研究,指导SAS设备的放大。 课题 04 课题及意义

  9. 1思路整理 课题开展总体思路 • 总结并分析实验及模拟结果,量化产品控制规律; • 提出回流区的影响因素及影响规律; • 提出现有设备的改善方案; 总结探讨 • 对模拟结果进行实验验证; • 与文献的模拟结果对比验证; 结果验证 • 改变各个物流进入沉降室的入口位置; • 改变喷嘴的长径比或改换喷嘴; • 改变喷嘴在沉降室中的高度 CFD模拟 • 确定实验体系; • 确定模拟控制参数; • 确定模拟参数; SAS实验

  10. 1.1 SAS实验 流量 浓度 压力 温度

  11. 1.2 CFD模拟 • 建立模型 • 根据实验设备建立物理模型,划分网格; • 初步建立数学模型,调整参数; • 确定并优化模型 • 检验模型的适用性及有效性; • 网格无关性检验; • CFD模拟计算 • 改变喷入位置等参数进行模拟计算;

  12. 1.3 模型验证 M.A. Tavares Cardoso等[18] 用CH2Cl2/CO2体系验证模型之后,直接应用于EtOH/CO2体系的CFD计算: (a)涡旋粘度;(b) CH2Cl2液柱喷射图[19];(c)CH2Cl2质量分数分布 [18]M.A. Tavares Cardoso, J.M.S. Cabral, A.M.F. Palavra,et al. CFD analysis of supercritical antisolvent (SAS) micronization of minocycline Hydrochloride[J],J. of Supercritical Fluids,47 (2008) 247–258 [19] E. Badens, O. Boutin, G. Charbit, Laminar jet dispersion and jet atomization in pressurized carbon dioxide, J. Supercrit. Fluids 36 (2005) 81.

  13. [40] [40] [40] 1.3 模型验证 [34] [20] E. Reverchon, E. Torino, S. Dowy, et al. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization[J]. Chemical Engineering Journal 156 (2010) 446–458.

  14. 2. 模型建立

  15. [21] [22] [23] [30] [29] 形貌不规整 [27] [28] [25] [24] [26] [26] 3. 体系选择 3.1放弃晶型微粒体系 [21]P. Subra,P. Berroya, A. Vega,et al. Process performances and characteristics of powders produced usingsupercritical CO2 as solvent and antisolvent[J]. Powder Technology 142 (2004) 13– 22. [22] Quan Ling Suo, Wen Zhi He, Yan Chun Huang, et al. Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization[J]. Powder Technology 154 (2005) 110 – 115. [23] Min-Soo KIM, Jeong-Soo KIM,Sung-Joo HWANG. Enhancement of Wettability and Dissolution Properties of CilostazolUsing the Supercritical Antisolvent Process: Effect of Various Additives[J]. Chem. Pharm. Bull. 58(2) 230—233 (2010). [24] Photchanathip Imsanguan, Suwassa Pongamphai,Supaporn Douglas, et al. Supercritical antisolvent precipitation of andrographolide from Andrographis paniculata extracts: Effect of pressure, temperature and CO2 flow rate[J]. Powder Technology 200 (2010) 246–253. [25] Sitaram P. Velaga, Stefan Bergh, Johan Carlfors. Stability and aerodynamic behaviour of glucocorticoid particles prepared by a supercritical fluids process. European Journal of Pharmaceutical Sciences 21 (2004) 501–509. [26] I. Kikic, P. Alessi,F.Eva, M. Moneghini, et al. Supercritical antisolvent precipitation of atenolol: The influence of the organic solvent and of the processing approach[J]. J. of Supercritical Fluids 38 (2006) 434–441 [27] Nicola De Zordi, Ireneo Kikic, Mariarosa Moneghini, et al. Piroxicam solid state studies after processing with SAS technique[J]. J. of Supercritical Fluids 55 (2010) 340–347. [28] Sitaram P. Velaga , Raouf Ghaderi, Johan Carlfors. Preparation and characterisation of hydrocortisone particles using a supercritical fluids extraction process[J]. International Journal of Pharmaceutics 231 (2002) 155–166. [29] Photchanathip Imsanguan, Tanawan Yanothai,Suwassa Pongamphai, et al. PRECIPITATION OF PHARMACEUTICALS USING A SUPERCRITICAL ANTI-SOLVENT (SAS) DECHNIQUE: A PRELIMINARY STUDY. THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING.2011,89:529-535. [30] S. Bristow, T. Shekunov, B.Yu. Shekunov, et al. Analysis of the supersaturation and precipitation process with supercritical CO2 [J]. Journal of Supercritical Fluids 21 (2001) 257–271. [6] [5] [4]

  16. Rifampicin (99.9%);DMSO(99.5%); CO2(99.9%); 沉淀室: 体积500ml, 直径50mm,喷嘴直径60 μm, 两个进口均在沉淀室顶部 沉淀室: 体积500ml, (实际367.3ml), 直径54.1mm, 喷嘴直径101 μm, 溶液进口在沉淀室顶部,CO2进口在侧壁 [31] SAS流程图[31] 3.2Rifampicin/DMSO/CO2体系 流程相似 AntisolventCO2 [31] Ernesto Reverchon, Iolanda De Marco. Supercritical antisolvent micronization of Cefonicid:thermodynamic interpretation of results. J. of Supercritical Fluids, 31 (2004) 207–215.

  17. 操作条件不同,得到的微粒形貌和粒度不同,便于考察其控制因素的影响操作条件不同,得到的微粒形貌和粒度不同,便于考察其控制因素的影响 微粒有多种形貌 [31] E. Reverchon, I.DeMarco,G.Della Porta, Rifampicin microparticles production by supercritical antisolvent precipitation, Int. J. Pharm. 243 (2002) 83–91.

  18. 40℃ —DMSO/CO2 - - DMSO /Rifampicin/CO2 120bar40℃ 90bar40℃ 考察参数:溶剂,浓度,压力.没有给出各条件下的平均粒径,而给出了PSD 图 90bar40℃ 实验数据较全 [31] E. Reverchon, I.DeMarco,G.Della Porta, Rifampicin microparticles production by supercritical antisolvent precipitation, Int. J. Pharm. 243 (2002) 83–91.

  19. Cefonicid(99.9%);DMSO(99.5%); CO2(99%); 沉淀室:容积500ml,CO2入口在沉淀室的顶部,与溶液入口非同轴,喷嘴直径200μm,但作者已证明PS 和PSD 受喷嘴直径的影响很小[32]. 考察参数: T:40-60 ℃, P :90 - 180 bar,C0: 10 - 90 mg/mL ,CO2摩尔分率 0.5 - 0.98. 浓度的改变会改变微粒形貌; 压力的升高使得微粒PS 变小,PSD 变窄; CO2摩尔分率的提高使得PS 减小,PSD 变窄; 3.3 Cefonicid/DMSO/CO2体系[32] [32]Ernesto Reverchon , Iolanda De Marco. Supercritical antisolvent precipitation of Cephalosporins, Powder Technology 164(3) (2006) 139–146. [33] E. Reverchon, G. Caputo, I. De Marco, The role of phase behavior and atomization in the supercritical antisolvent precipitation, Ind. Eng. Chem.Res. 42 (25) (2003) 6406–6414.

  20. 180bar 40℃ 50mg/ml 40℃ 50mg/ml 实验数据较全 [32] [32] [31] [31] [31] Ernesto Reverchon, Iolanda De Marco. Supercritical antisolvent micronization of Cefonicid:thermodynamic interpretation of results. J. of Supercritical Fluids, 31 (2004) 207–215. [32]Ernesto Reverchon , Iolanda De Marco. Supercritical antisolvent precipitation of Cephalosporins, Powder Technology 164(3) (2006) 139–146.

  21. 重点讨论了温度和溶液浓度对微粒形貌和PS\PSD 的影响,并用三元相图中MCP 线的迁移来解释微粒形貌的形成机理[31]. 60℃ 微粒有多种形貌 [32] [31] [31] [31] Ernesto Reverchon, Iolanda De Marco. Supercritical antisolvent micronization of Cefonicid:thermodynamic interpretation of results. J. of Supercritical Fluids, 31 (2004) 207–215. [32]Ernesto Reverchon , Iolanda De Marco. Supercritical antisolvent precipitation of Cephalosporins, Powder Technology 164(3) (2006) 139–146.

  22. 4. 进展计划 4.12012年度学习计划 表1 2012年度月计划课题进展规划

  23. 1 2 3 5 6 4 4.2工作计划-总结实验 表2 Al(NO3)3·9H2O/EtOH/CO2体系,溶液流量2ml/min. 温度 32℃ 44℃ 32℃ 44℃ 52℃ 52℃ 压力 160bar 160bar 160bar 160bar 160bar 160bar 浓度 2%(W/W) 2%(W/W) 2%(W/W) 2%(W/W) 2%(W/W) 2%(W/W) CO2 流量 38g/ml 45g/ml 45g/ml 38g/ml 45g/ml 38g/ml

  24. 4.3 计算模型 喷射流场的CFD模拟 模型及参数修正 网格无关性检验 数学模型 确定最终的物理模型 检验模型的有效性

  25. 请老师们批评指正! Thank You!

More Related