SUPERINTENDÊNCIA DA EDUCAÇÃO DEPARTAMENTO DE EDUCAÇÃO BÁSICA FORMAÇÃO EM AÇÃO - PowerPoint PPT Presentation

slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
SUPERINTENDÊNCIA DA EDUCAÇÃO DEPARTAMENTO DE EDUCAÇÃO BÁSICA FORMAÇÃO EM AÇÃO PowerPoint Presentation
Download Presentation
SUPERINTENDÊNCIA DA EDUCAÇÃO DEPARTAMENTO DE EDUCAÇÃO BÁSICA FORMAÇÃO EM AÇÃO

play fullscreen
1 / 49
SUPERINTENDÊNCIA DA EDUCAÇÃO DEPARTAMENTO DE EDUCAÇÃO BÁSICA FORMAÇÃO EM AÇÃO
123 Views
Download Presentation
ford
Download Presentation

SUPERINTENDÊNCIA DA EDUCAÇÃO DEPARTAMENTO DE EDUCAÇÃO BÁSICA FORMAÇÃO EM AÇÃO

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. SUPERINTENDÊNCIA DA EDUCAÇÃO DEPARTAMENTO DE EDUCAÇÃO BÁSICA FORMAÇÃO EM AÇÃO OFICINA DE MATEMÁTICA 1ª PARTE 1º SEMESTRE - 2013

  2. DIRETRIZES CURRICULARES ORIENTADORAS DA EDUCAÇÃO BÁSICA DO ESTADO DO PARANÁ

  3. - Histórico (DEB Itinerante, Semana Pedagógica, Seminários Descentralizados) - Currículo disciplinar - Sujeitos da Educação Básica - Interdisciplinaridade - Contextualização - Avaliação

  4. DIRETRIZES CURRICULARES ORIENTADORAS PARA EDUCAÇÃO BÁSICA Matemática

  5. Abimael Fernando Moreira Carmelígia MarchiniLucimar Donizete GusmãoEquipe de MatemáticaDEB/SEED/PR debmatematica@gmail.com(41) 3340 1714

  6. DCE - Matemática • Dimensão Histórica da Disciplina • Fundamentos Teórico-Metodológicos • Conteúdos Estruturantes • Encaminhamentos Metodológicos • Avaliação

  7. DIMESÃO HISTÓRICA Matemática como campo científico  situa os Conteúdos Estruturantes. Matemática como disciplina escolar  transposição do conhecimento matemático para a educação escolar. Objeto de estudo.

  8. FUNDAMENTOS TEÓRICO-METODOLÓGICO

  9. Investiga as relações entre ensino, aprendizagem e conhecimento matemático, fundamentado numa ação crítica que concebe a Matemática como atividade humana em construção. • Ensino que possibilita análises, discussões, conjecturas, apropriação de conceitos e formulação de ideias.

  10. CONTEÚDOS ESTRUTURANTES

  11. Encaminhamentos Metodológicos 1) Articulação entre os Conteúdos Estruturantes → conceitos se intercomunicam e complementam. Exemplo: Uma praça retangular tem 92,4 m de comprimento e sua largura é 1/3 da medida do comprimento. Uma menina dá 5 voltas completas no seu contorno. a) Quantos quilômetros a menina andou no total? b) Se, em média cada passo da menina mede 60 cm, quantos passos ela deu, aproximadamente, nessa caminhada?

  12. 2) Tendências Metodológicas – Educação Matemática:

  13. RESOLUÇÃO DE PROBLEMAS • Trata-se de uma metodologia pela qual o estudante tem oportunidade de aplicar conhecimentos matemáticos adquiridos em novas situações, de modo a resolver a questão proposta.

  14. Etapas, segundo Polya: Compreender o problema; Destacar informações, dados importantes do problema, para a sua resolução; Elaborar um plano de resolução; Executar o plano; Conferir resultados; Estabelecer nova estratégia, se necessário, até chegar a uma solução aceitável. (POLYA, G. A Arte de Resolver Problemas. Editora Interciência, Rio de Janeiro, 1995).

  15. ETNOMATEMÁTICA Enfatiza as matemáticas produzidas pelas diferentes culturas; Leva em consideração que não existe um único, mas vários e distintos conhecimentos e nenhum é menos importante que outro; Considerando o aspecto cognitivo, revela-se que o aluno é capaz de reunir situações novas com experiências anteriores, adaptando essas às novas circunstâncias e ampliando seus fazeres e saberes.

  16. Etnomatemática como Recurso Pedagógico Alguns passos são necessários serem observados para que a Etnomatemática seja incorporada no currículo escolar, articulando conteúdos matemáticos às experiências vividas pelos alunos.

  17. (Fonte: KNIJNIK, G.; WANDERER, F.; OLIVEIRA, C. J. de. Etnomatemática: currículo e formação de professores. Santa Cruz do Sul: EDUNISC, 2004 )

  18. Exemplo Saberes de uma comunidade do campo Divisão de Terrenos Quanto de terreno é distribuído para cada família dessa comunidade? R. 10 litros. O que são 10 litros? R. Uma quarta. Quanto? R. 6 000 m² (Fonte: http://www.diaadiaeducacao.pr.gov.br/portals/pde/arquivos/2430-8.pdf)

  19. Encaminhamentos de alguns conteúdos matemáticos Estabelecer relação entre as medidas citadas (litro, quarta) no problema com as medidas de superfícies agrárias. Além disso fazer relação com unidade padrão de comprimento: o metro (m), seus múltiplos e submúltiplos e as medidas de superfície.

  20. MODELAGEM MATEMÁTICA

  21. A modelagem matemática tem como pressuposto a problematização de situações do cotidiano. • Procura levantar problemas que sugerem questionamentos sobre situações de vida. • Modelagem matemática é o processo que envolve a obtenção de um modelo. • Através da modelagem o aluno aprende matemática e não a modelagem.

  22. Modelagem Matemática • Espera-se: • Incentivar a pesquisa; • Promover a habilidade em formular e resolver problemas; • Lidar com temas de interesse; • Aplicar o conteúdo matemático; • Desenvolver a criatividade.

  23. Etapas • Escolha do tema; • Formulação (levantamento de informações); • Elaboração de um modelo matemático • Resolução do(s) problema(s) e desenvolvimento do conteúdo matemático no contexto do tema • Análise crítica da(s) solução(ões) – Validação e extensão dos trabalhos desenvolvidos

  24. Modelação matemática x Modelagem Matemática O método que se utiliza da essência da modelagem matemática chama-se Modelação Matemática. Norteia-se por desenvolver o conteúdo da grade curricular a partir de um modelo matemático. A diferença entre modelagem e modelação é que na modelagem não dá para prever inicialmente em que modelo se chegará nem se a matemática exigida está ao alcance do nível desejado, esses modelo se dará no processo. (BIEMBENGUT & HEIN, 2005).

  25. Modelação matemática x Modelagem Matemática A modelagem parte de uma situação/tema e sobre ela desenvolve questões, que tentarão ser respondidas mediante o uso de conceitos matemáticos e da pesquisa sobre o tema. A modelação, “o professor pode optar por escolher determinados modelos, fazendo sua recriação em sala, juntamente com os alunos, de acordo com o nível em questão, além de obedecer ao currículo inicialmente proposto (BIEMBENGUT & HEIN, 2005).

  26. Exemplo Qual é a variação do nível da água em um recipiente, quando são colocadas bolinhas de gude no recipiente, que continha um volume inicial de água? Recursos: Um copo cilíndrico Bolinhas de gude; Uma régua; Folhas de papel milimetrado. (Fonte: http://www.inicepg.univap.br/cd/INIC_2004/trabalhos/inic/pdf/IC1-18R.pdf )

  27. O modelo matemático pode ser resolvido através do levantamento de dados da situação, experimentações, formulação e resolução de equações. Este exemplo pode ser aplicado nas séries do Ensino Médio por usar conceitos de geometria analítica. Experimento: Neste experimento, o nível da água no copo é função do número de bolinhas de gude que são colocadas dentro do copo. Considere o número de bolinhas como a variável independente e o nível de água como variável dependente.

  28. Procedimentos: • Trabalhar em grupos de dois ou três alunos; • Colocar água no copo até atingir uma altura inicial de 6 cm; • Colocar as bolinhas de gude no copo com água (cinco bolinhas de cada vez) e anotar numa tabela o nível da água; • Construir, na folha de papel milimetrada, o gráfico do nível da água em função do número de bolinhas, a partir dos valores obtidos.

  29. Organização e análise dos resultados: 1) Encontre uma possível equação para a situação trabalhada. A partir dessa equação, responda: a) à medida que as bolinhas são acrescentadas, o que acontece com a altura da água no copo? b) Quantas bolinhas de gude devem ser colocadas para que a água fique no limite da borda do copo? c) Que altura teremos se colocarmos somente uma bolinha no copo? E se colocarmos nove bolinhas? d) Como você explica o fato do gráfico ter dado uma reta? e) Mudando o tamanho das bolinhas e/ou o raio do copo, o que muda na expressão da função? 2) Deduza uma relação entre x e y a partir da situação geométrica.

  30. Outros Exemplos - Construção de casas (BIEMBENGUT & HEIN, 2005, p. 52-69). - Transporte de barro para fabricação de telhas e tijolos. Disponível em <http://www.ppgedmat.ufop.br/arquivos/Produto_Vilma_Bueno.pdf> Acesso em 29 de abril de 2013. - Outros Exemplos: Modelagem Matemática: quatro maneiras de compreendê-la. Disponível em http://www.ppgedmat.ufop.br/arquivos/Produto_Vilma_Bueno.pdf. Acesso em 29 de abril de 2013. - O uso da modelação matemática na construção do conceito de função. Disponível em <http://www.cimm.ucr.ac.cr/ocs/index.php/xiii_ciaem/xiii_ciaem/paper/view/403/382>. Acesso em 29 de abril de 2013.

  31. HISTÓRIA DA MATEMÁTICA • Deve ser o fio condutor que direciona as explicações dadas aos porquês da Matemática.

  32. Propicia ao estudante entender que o conhecimento matemático é construído historicamente a partir de situações concretas e necessidades reais. • O objetivo não é levar apenas informação ao aluno, mas possibilitar reconstruir a perspectiva histórica que deu origem àquele conhecimento através de problemas, assim o aluno compreenderá que a matemática se desenvolveu da necessidade do homem de resolvê-los.

  33. Exemplo 1 – Utilizando paradidáticos Sistema de numeração decimal; Divisores de um número; Regras de divisibilidade Sugestão: Ler, interpretar a história apresentada no livro, fazer as atividades e confeccionar o material prático sugerido nas questões. Teorema de Tales e Trigonometria.

  34. Exemplo 2 Assistir o vídeo: A História da Matemática - Para o Infinito e Além - Parte A Disponível em <http://www.educadores.diaadia.pr.gov.br/modules/debaser/singlefile.php?id=20555>. Acesso em 30 de abril de 2013. Discuta com os alunos os conceitos matemáticos abordados.

  35. INVESTIGAÇÃO MATEMÁTICA • Uma investigação é um problema em aberto e por isso, as coisas acontecem de forma diferente do que na resolução de problemas e exercícios.

  36. O objeto a ser investigado não é explicitado pelo professor, porém o método de investigação deverá ser indicado através, por exemplo, de uma introdução oral, de maneira que o aluno compreenda o significado de investigar. • Assim, uma mesma situação apresentada poderá ter objetos de investigação distintos por diferentes grupos de alunos. E mais, se os grupos partirem de pontos de investigação diferentes, com certeza obterão resultados também diferentes.

  37. Exemplo (Fonte: http://www.scielo.br/scielo.php?pid=S0101-32622008000100004&script=sci_arttext)

  38. Uma solução... Quando o lado do quadrado medir 1, 2 e 3, o perímetro é maior do que a área, quando o lado do quadrado for maior do que 4, a área é maior (Fonte: http://www.scielo.br/scielo.php?pid=S0101-32622008000100004&script=sci_arttext)

  39. Resolução de Problemas X Investigação Matemática? • Na resolução de problemas as questões estão formuladas à partida, enquanto nas investigações esse será o primeiro passo a desenvolver. • Num problema, procura-se atingir um ponto não imediatamente acessível, ao passo que numa investigação o objetivo é a própria exploração.

  40. MÍDIAS TECNOLÓGICAS • As ferramentas tecnológicas são interfaces importantes no desenvolvimento de ações em Educação Matemática. • Abordar atividades matemáticas com os recursos tecnológicos enfatiza um aspecto fundamental da disciplina, que é a experimentação. • De posse dos recursos tecnológicos, os estudantes argumentam e conjecturam sobre as atividades com as quais se envolvem na experimentação.

  41. Exemplo O Uso de Calculadoras nas Aulas de Matemática Hora Atividade Interativa. Disponível em: <http://www.matematica.seed.pr.gov.br/modules/conteudo/conteudo.php?conteudo=318>. Acesso em 29 de abril de 2013.

  42. Nenhuma das tendências apresentadas esgota todas as possibilidades para realizar com eficácia o complexo processo de ensinar e aprender Matemática. • Sempre que possível, o ideal é promover a articulação entre elas. • A abordagem dos conteúdos pode transitar por todas as tendências da Educação Matemática.

  43. AVALIAÇÃO • Considera-se que a avaliação deve acontecer ao longo do processo do ensino-aprendizagem, ancorada em encaminhamentos metodológicos que abram espaço para a interpretação e discussão, que considerem a relação do aluno com o conteúdo trabalhado, o significado desse conteúdo e a compreensão alcançada por ele.

  44. CADERNO DE EXPECTATIVAS • Ampliação dos conteúdos básicos mencionados nas DCE de Matemática; • Pode subsidiar o planejamento do professor, apontando o que é fundamental o aluno saber dentro de cada conteúdo básico.

  45. Referências/Consultas BIEMBENGUT, M. S.; HEIN, N. Modelagem matemática no ensino. 4. ed. São Paulo: Contexto, 2005 MORAES, Ana R. S.; ROLKOUSKI, Emerson. Considerações sobre a Etnomátemática e suas implicações em sala de aula. Disponível em < http://www.diaadiaeducacao.pr.gov.br/portals/pde/arquivos/2430-8.pdf> Acesso em 29 de abril de 2013. MOTA Gisele M.; QUEIROZ, Luiz C. Modelagem Matemática: uma proposta para Educação Matemática. Disponível em: http://www.inicepg.univap.br/cd/INIC_2004/trabalhos/inic/pdf/IC1-18R.pdf Acesso em 07 de abril de 2013. NETO, Leonardo D. Azevedo. Modelagem Matemática no Ensino de Funções Polinomiais do 2º Grau. Disponível em<http://www.pedagogia.com.br/artigos/modelagemmatematica/index.php?pagina=0> .Acesso em 29 de abril de 2013 PARANÁ. Secretaria de Estado da Educação. Diretrizes Curriculares da Educação Básica - Matemática. Curitiba: Seed/DEB-PR, 2008. PARANÁ. Secretaria de Estado da Educação. Caderno de Expectativa de Aprendizagem – Matemática. Curitiba: Seed/DEB-PR, 2012.

  46. Abimael Fernando Moreira Carmeligia MarchiniLucimar Donizete GusmãoEquipe de MatemáticaDEB/SEED/PR debmatematica@gmail.com(41) 3340 1714