1 / 39

October 24, 2005

Introduction to Algorithms. LECTURE (Chapter 18) B-Trees ‧18.1 Definition of B-Tree ‧18.2 Basic operations on B-Tree ‧18.3 Deleting a key from a B-Tree. October 24, 2005. L11.1. Disk Based Data Structures. So far search trees were limited to main memory structures

finnea
Download Presentation

October 24, 2005

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to Algorithms LECTURE (Chapter 18) B-Trees ‧18.1 Definition of B-Tree ‧18.2 Basic operations on B-Tree ‧18.3 Deleting a key from a B-Tree October 24, 2005 L11.1

  2. Disk Based Data Structures • So far search trees were limited to main memory structures • Assumption: the dataset organized in a search tree fits in main memory (including the tree overhead) • Counter-example: transaction data of a bank > 1 GB per day • increase main memory size by 1GB per day (power failure?) • use secondary storage media (punch cards, hard disks, magnetic tapes, etc.) • Consequence: make a search tree structure secondary-storage-enabled

  3. Hard disk I • In real systems, we need to cope with data that does not fit in main memory • Reading a data element from the hard-disk: • Seek with the head • Wait while the necessary sector rotates under the head • Transfer the data

  4. Hard Disks II • Large amounts of storage, but slow access! • Identifying a page takes a long time (seek time plus rotational delay – 5-10ms), reading it is fast • It pays off to read or write data in pages (or blocks) of 2-16 Kb in size.

  5. Algorithm analysis • The running time of disk-based algorithms is measured in terms of • computing time (CPU) • number of disk accesses • sequential reads • random reads • Regular main-memory algorithms that work one data element at a time can not be “ported” to secondary storage in a straight-forward way

  6. Principles • Pointers in data structures are no longer addresses in main memory but locations in files • If x is a pointer to an object • if x is in main memory key[x] refers to it • otherwise DiskRead(x) reads the object from disk into main memory (DiskWrite(x) – writes it back to disk)

  7. Principles (2) • A typical working pattern 01… 02x ¬ a pointer to some object 03 DiskRead(x) 04operations that access and/or modify x 05 DiskWrite(x) //omitted if nothing changed 06 other operations, only access no modify 07 …

  8. B-tree Definitions • Node x has fields • n[x]: the number of keys of that the node • key1[x] <=… <= keyn[x][x]: the keys in ascending order • leaf[x]: true if leaf node, false if internal node • if internal node, then c1[x], …, cn[x]+1[x]: pointers to children • Keys separate the ranges of keys in the sub-trees. If ki is an arbitrary key in the subtree ci[x] then ki <=keyi[x] <=ki+1

  9. B-tree Definitions (2) • Every leaf has the same depth • All nodes except the root node have between t and 2t children (i.e. between t–1 and 2t–1 keys). A B-tree of a degreet. • The root node has between 0 and 2t children (i.e. between 0 and 2t–1 keys)

  10. B-tree: Definition (3) • We are concerned only with keys • B-tree is a balanced tree • The nodes have high fan-out (many children) P C G M T X A B D E F J K L N O Q R S U V Y Z

  11. Height of a B-tree • B-tree T of height h, containing n ≥1 keys and minimum degree t≥2, the following restriction on the height holds: 1 t - 1 t - 1 t t t - 1 t - 1 … t - 1 t - 1 t - 1 … t - 1

  12. 1 node1000 keys 1000 1001 1001 nodes,1,001,000 keys 1000 1000 … 1000 1001 1001 1001 1,002,001 nodes,1,002,001,000 keys 1000 1000 … 1000 Binary-trees vs. B-trees • Size of B-tree nodes is determined by the page size. One page – one node. • A B-tree of height 2 containing > 1 Billion keys! • Heights of Binary-tree and B-tree are logarithmic • B-tree: logarithm of base, e.g., 1000 • Binary-tree: logarithm of base 2

  13. Red-Black-trees and B-trees • Comparing RB-trees and B-trees • both have a height of O(log n) • for RB-tree the log is of base 2 • for B-trees the base is ~1000 • The difference with respect to the height of the tree is lg t • When t=2, B-trees are 2-3-4-trees (which are representations of red-black trees)!

  14. B-tree Operations • An implementation needs to support the following B-tree operations • Searching (simple) • Creating an empty tree (trivial) • Insertion (complex) • Deletion (complex)

  15. Searching • n():int –n(x) the number of keys in node x • keyi()–keyi(X) the i-th key in x • ci()–ci(x) the i-th pointer in x • leaf():bool - leaf(x) is true if x is a leaf BTreeSearch(x,k) 01 i ¬ 1 02 while i £ n[x] and k > keyi[x] 03 i ¬ i+1 04 if i £ n[x] and k = keyi[x] then 05 return(x,i) 06 if leaf[x] then 08 return NIL 09 else DiskRead(ci[x]) 10 return BTtreeSearch(ci[x],k)

  16. Creating an Empty Tree • Empty B-tree = create a root • & write it to disk! BTreeCreate(T) 01 x ¬ AllocateNode(); 02 leaf[x] ¬ TRUE; 03 n[x] ¬ 0; 04 DiskWrite(x); 05 root[T] ¬ x

  17. Splitting Nodes • Nodes fill up and reach their maximum capacity 2t – 1 • Before we can insert a new key, we have to “make room,” i.e., split nodes

  18. Splitting Nodes (2) • Result: one key of x moves up to parent + 2 nodes with t-1 keys keyi-1[x] keyi[x] keyi-1[x] keyi[x] keyi+1[x] x x ... N W ... ... N S W ... y = ci[x] y = ci[x] z = ci+1[x] P Q R S T V W P Q R T V W T1 ... T8

  19. Splitting Nodes (2) BTreeSplitChild(x,i,y) 01 z ¬ AllocateNode() 02 leaf[z] ¬ leaf[y] 03 n[z] ¬ t-1 04 for j ¬ 1 to t-1 05 keyj[z] ¬ keyj+t[y] 06 if not leaf[y] then 07 for j ¬ 1 to t 08 cj[z] ¬ cj+t[y] 09 n[y] ¬ t-1 10 for j ¬ n[x]+1 downto i+1 11 cj+1[x] ¬ cj[x] 12 ci+1[x] ¬ z 13 for j ¬ n[x] downto i 14 keyj+1[x] ¬ keyj[x] 15 keyi[x] ¬ keyt[y] 16 n[x] ¬ n[x]+1 17 DiskWrite(y) 18 DiskWrite(z) 19 DiskWrite(x) x: parent nodey: node to be split and child of xi: index in xz: new node keyi-1[x] keyi[x] x ... N W ... y = ci[x] P Q R S T V W T1 T8 ...

  20. Split: Running Time • A local operation that does not traverse the tree • Q(t) CPU-time, since two loops run t times • 3 I/Os

  21. Inserting Keys • Done recursively, by starting from the root and recursively traversing down the tree to the leaf level • Before descending to a lower level in the tree, make sure that the node contains < 2t – 1 keys

  22. Inserting Keys (2) • Special case: root is full (BtreeInsert) BTreeInsert(T) 01 r ¬ root[T] 02 if n[r] = 2t – 1 then 03 s ¬ AllocateNode() 05 root[T] ¬ s 06 leaf[s] ¬ FALSE 07 n[s] ¬ 0 08 c1[s] ¬ r 09 BTreeSplitChild(s,1,r) 10 BTreeInsertNonFull(s,k) 11 else BTreeInsertNonFull(r,k)

  23. root[T] root[T] s r H A D F H L N P r A D F L N P T1 ... T8 Splitting the Root • Splitting the root requires the creation of new nodes • The tree grows at the top instead of the bottom

  24. Inserting Keys • BtreeNonFull tries to insert a key k into a node x, whch is assumed to be nonfull when the procedure is called • BTreeInsert and the recursion in BTreeInsertNonFull guarantee that this assumption is true!

  25. Inserting Keys: Pseudo Code BTreeInsertNonFull(x,k) 01 i ¬ n[x] 02 if leaf[x] then 03 while i ³ 1 and k < keyi[x] 04 keyi+1[x] ¬ keyi[x] 05 i ¬ i - 1 06 keyi+1[x]= k 07 n[x] ¬ n[x] + 1 08 DiskWrite(x) 09 elsewhile i ³ 1 and k < keyi[x] 10 i ¬ i - 1 11 i ¬ i + 1 12 DiskRead ci[x] 13 if n[ci[x]] = 2t – 1 then 14 BTreeSplitChild(x,i,ci[x]) 15 if k > keyi[x] then 16 i ¬ i + 1 17 BTreeInsertNonFull(ci[x],k) leaf insertion internal node: traversing tree

  26. Insertion: Example initial tree (t = 3) G M P X A C D E J K N O R S T U V Y Z B inserted G M P X A B C D E J K N O R S T U V Y Z Q inserted G M P T X A B C D E J K N O Q R S U V Y Z

  27. Insertion: Example (2) P L inserted G M T X A B C D E J K L N O Q R S U V Y Z F inserted P C G M T X A B D E F J K L N O Q R S U V Y Z

  28. Insertion: Running Time • Disk I/O: O(h), since only O(1) disk accesses are performed during recursive calls of BTreeInsertNonFull • CPU: O(th) = O(t logtn) • At any given time there are O(1) number of disk pages in main memory

  29. Deleting Keys • Done recursively, by starting from the root and recursively traversing down the tree to the leaf level • Before descending to a lower level in the tree, make sure that the node contains >t keys (cf. insertion < 2t – 1 keys) • BtreeDelete distinguishes three different stages/scenarios for deletion • Case 1: key k found in leaf node • Case 2: key k found in internal node • Case 3: key k suspected in lower level node

  30. Deleting Keys (2) initial tree P • Case 1: If the key k is in node x, and x is a leaf, delete k from x C G M T X A B D E F J K L N O Q R S U V Y Z F deleted: case 1 P C G M T X A B D E J K L N O Q R S U V Y Z x

  31. Deleting Keys (3) • Case 2: If the key k is in node x, and x is not a leaf, delete k from x • a) If the child y that precedes k in node x has at least t keys, then find the predecessor k’ of k in the sub-tree rooted at y. Recursively delete k’, and replace k with k’ in x. • b) Symmetrically for successor node z M deleted: case 2a P x C G L T X A B D E J K N O Q R S U V Y Z y

  32. Deleting Keys (4) • If both y and z have only t –1 keys, mergek with the contents of z into y, so that x loses both k and the pointers to z, and y now contains 2t – 1 keys. Free z and recursively delete k from y. G deleted: case 2c P x - k C L T X A B D E J K N O Q R S U V Y Z y = k + z - k

  33. Deleting Keys - Distribution • Descending down the tree: if k not found in current node x, find the sub-tree ci[x] that has to contain k. • If ci[x] has only t – 1 keys take action to ensure that we descent to a node of size at least t. • We can encounter two cases. • If ci[x] has only t-1 keys, but a sibling withat least t keys, give ci[x] an extra key by moving a key from x to ci[x], moving a key from ci[x]’s immediate left and right sibling up into x, and moving the appropriate child from the sibling into ci[x] - distribution

  34. Deleting Keys – Distribution(2) x ... k’ ... x ... k ... ci[x] ... k ci[x] k’ ... A B B A C L P T X delete B ci[x] A B E J K N O Q R S U V Y Z sibling B deleted: E L P T X A C J K N O Q R S U V Y Z

  35. Deleting Keys - Merging • If ci[x] and both of ci[x]’s siblings have t – 1 keys, merge ci with one sibling, which involves moving a key from x down into the new merged node to become the median key for that node x ... l’ m’ ... x ... l’ k m’... ...l k m ... ci[x] m … ... l A B B A

  36. Deleting Keys – Merging (2) P ci[x] sibling delete D C L T X A B D E J K N O Q R S U V Y Z D deleted: C L P T X A B E J K N O Q R S U V Y Z tree shrinks in height

  37. Deletion: Running Time • Most of the keys are in the leaf, thus deletion most often occurs there! • In this case deletion happens in one downward pass to the leaf level of the tree • Deletion from an internal node might require “backing up” (case 2) • Disk I/O: O(h), since only O(1) disk operations are produced during recursive calls • CPU: O(th) = O(t logtn)

  38. Two-pass Operations • Simpler, practical versions of algorithms use two passes (down and up the tree): • Down – Find the node where deletion or insertion should occur • Up – If needed, split, merge, or distribute; propagate splits or merges up the tree • To avoid reading the same nodes twice, use a buffer of nodes

  39. Other Access Methods • B-tree variants: B+-trees, B*-trees • B+-trees used in data base management systems • General Scheme for access methods (used in B+-trees, too): • Data keys stored only in leaves • Keys are grouped into leaf nodes • Each entry in a non-leaf node stores • a pointer to a sub-tree • a compact description of the set of keys stored in this sub-tree

More Related