1 / 64

Гамма-всплеск GRB060218: SWIFT/BAT-триггер: 18 Фев. 2006, 03:34:30 UT (Cusumano et al. 2006)

Hydrogen in early spectra of the Type Ic supernova XRF060218/SN2006aj V.V.Sokolov, E.Sonbas, A.S.Moskvitin , T.A.Fatkhullin, T.N.Sokolova , V.N.Chernenkov.

fergusonv
Download Presentation

Гамма-всплеск GRB060218: SWIFT/BAT-триггер: 18 Фев. 2006, 03:34:30 UT (Cusumano et al. 2006)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hydrogen in early spectra of the Type Ic supernova XRF060218/SN2006aj V.V.Sokolov, E.Sonbas, A.S.Moskvitin, T.A.Fatkhullin, T.N.Sokolova, V.N.Chernenkov In early spectra of the X-ray burst XRF/GRB 060218 (obtained with BTA in February 2006, Fatkhullin et al., GCN GRB Report No 4809) of type Ic we detected a spectral detail which is interpreted as the H_alpha line (P-Cyg absorption) component that can be connected to an envelope which usually arises around a massive progenitor star due to stellar wind. The same envelope was observed during the XRF/GRB burst itself as a powerful black-body (shock break-out) in its spectrum (Campana et al., 2006, Nature, 442, 1008).

  2. Гамма-всплеск GRB060218: SWIFT/BAT-триггер: 18 Фев. 2006, 03:34:30 UT (Cusumano et al. 2006) длительность: ~2000 сек. (один из самых долговременных!) γ-спектр: очень мягкий Epeak = 4.9 кэВ (X-ray flash класс) Eiso= 5∙1049 эрг (15.5 – 154.8 кэВ в системе отсчета GRB) Lpeak= 6∙1046 эрг/сек SWIFT/UVOT локализация:α = 03h 21m39s .8, δ = +16º 52' 06" (± 1") доступны через GCN спустя 54 минуты, B=19.4 SDSS архивный объект: протяженный объект (R=19.7, B-R = 0.46) Интесивные наземные срочные спектральные наблюдения на телескопах MDM, MMT, BTA, Gemini, VLT

  3. Поле оптического транзиента Начало спектральных наблюдений на БТА: 20.647 Фев. 2006 UT (~ 60 часов после GRB) P.A. = 3° VOT = 18.16 (B-R)OT = 0.3

  4. Спектральные наблюдения: SCORPIO, длинная щель (ширина 1") VPHG550G, дисперсия 2.1Å, разрешение FWHM = 10Å, диапазон 3400-7500ÅÅ Эпохи наблюдений: Δt = 2.56 дня Δt =3.55 дня Δt =31.58 дня

  5. The BTA first spectra of OT GRB 060218 [OIII] Hα [OII] 3727 He II 4686 Å Hβ Hγ He I 5876 Å 21.70 UT 2006 Feb. 20.70 UT Tfirst_SP = 2.55 d

  6. Astro-ph/0603279 The phenomenon (the shock break-out) typical for “massive" SN (core-collapse SN Ib/c and SN II), we said about in relation with GRB 030329/SN2003dh (z=0.1685), was directly observed for GRB 060218/SN2006aj (z=0.0331). The closer GRB is, the more features of SN (from 2000). So, GRB is a beginning of core-collapse SN explosion indeed, and GRB is a signal allowing us to catch a SN in the act of exploding.

  7. (0.3-10 keV) a black body component ~ 106 K (15-150 keV) Astro-ph/0603279, Campana et al. Swift GRB 060218 light curve Time (s)

  8. The shock breaks out through the wind… γ-rays + X-rays ≈ 6·1049 erg GRB afterglow The radioactive heating GRB energy ~ UV burst energy Astro-ph/0603279, Campana et al. XRT and UVOT The shock break-out UV burst ≈ 3·1049 erg 1.16 d 11.6 d

  9. The most distinguishing feature of GRB060218/SN2006aj is the thermal (black body with kT ~ 0.16-0.17 keV) emission which is seen (first) in the X-ray spectrum, and then the black body (bb) peak shifted to UV and optical (within the UVOT) passband with kT ~ 3.8 eV.

  10. UVOT UV burst ~ 11 hours after GRB 1.16 d Astro-ph/0603279, Campana et al. L = 4πR2σT4 The radius of the pre-SN/GRB060218 ~ 100 R סּ

  11. An increase in the apparent emission radius from R_bb,XRT=5.1x1011 cm to 1.2x1012 cm in the time range 300s-2700s, and then to R_bb, UVOT=3,3x1014 cm at ~1.4 days, demands an expansion speed of 2.8x109 sms-1.This speed is typical for core-collapse SNe and it is also comparable with the line broadening observed in the SN2006aj spectra…

  12. The early spectra of the Type Ic supernova SN2006aj

  13. Astro-ph/0603686(Mirabal et al.) Tfirst_Sp = 1.95 d., CCDS/MDM 2.4m,z = 0.0331

  14. Monitoring of the optical transient of the closest GRB The program “physics of GRBs in the SWIFT era». A. Castro-Tirado (IAA-CSIC, Spain), V.Sokolov, T.Fatkhullin (SAO) The spectral monitoring of the optical afterglow of the closest GRB060218 with the red shift z = 0.033 was carried out with the BTA (and with the swears). Broad spectral details typical for massive supernovae of type Ib-c were detected in early (February, 20, 21 ) spectra of the optical transient. Absorption at ~4600A (February, 21) can be a result of the blend of iron lines (Fe II), as, for example, in the case of Ic type supernovae SN 1997ef and SN 2002ap. The main result of the joint monitoring (the BTA + other telescopes): ”long” GRBs are the beginning of explosion of massive supernovae, and, the most probably, the burst that we observe is the relativistic collapse of the star nucleus and the burst of a very dense object – the compact remnant of supernova explosion. The last spectrum obtained on August, 27, clearly shows a wide blend [OI] 6300, 6364 A typical for the nebular stage of supernovae. This is already the spectrum of the host galaxy almost without contribution of the supernova SN 2006aj related to the GRB 060218(SN 2006aj/GRB 060218).

  15. Мониторинг оптического транзиента самого близкого GRB Программа «Физика гамма-всплесков в эпоху SWIFT». А. Кастро-Тирадо (IAA-CSIC, Испания), В.Соколов, Т.Фатхуллин (САО) На БТА проведен спектральный мониторинг оптического послесвечения самого близкого гамма-всплеска GRB060218 с красным смещением z = 0.033. В ранних спектрах (20, 21 февраля) оптического транзиента обнаружены широкие спектральные детали, характерные для массивных сверхновых Ib-c типа. Абсорбция на длине волны ~4600A (21 февраля) может быть результатом бленды линий железа (Fe II), как, например, в случае сверхновых Ic типа SN 1997ef и SN 2002ap. В последнем спектре,полученном 27 августа, явно видна широкая бленда [OI] 6300, 6364A, характерная для небулярной стадии сверхновых. Это уже спектр родительской галактики почти без вклада сверхновой SN 2006aj, связанной с гамма-всплеском GRB 060218(SN 2006aj/GRB 060218). Основной результат совместного мониторинга (БТА + другие телескопы): «длинные» гамма-всплески – это начало взрыва массивных сверхновых, и, скорее всего, в виде всплеска мы наблюдаем релятивистскийколлапс ядра звезды и рождение очень плотногообъекта – компактного остатка взрыва сверхновой.

  16. На VLT спектр отрезан за H_gamma (не ту решетку поставили !). in the rest frame Astro-ph/0603530 (Pian et al.) T_first_Sp = 2.89 d., FORS2/VLT(UT1), seeing=1.7" and V=18.17,(кроме 2-го спектра: KDBS/Lisk 3m, seeing 2.02")

  17. The early spectra of GRB 060218 OT before Feb 23 Tfirst Sp is a time after GRB 060218 These are spectra with the high S/N ratio. The 6100A absorptionreaches the maximal depth and width at the moment UT Feb ~ 23. Here we do not take into account the early spectrum of their paper Modjaz et al. (0603377), obtained with the low S/N ratio at the FLWO 1.5m telescope 3.97 days after the burst.

  18. SYNOW The interpretation of spectra

  19. Astro-ph/0611182

  20. Astro-ph/0604047

  21. Astro-ph/0604047

  22. * The core-collapse or massive supernovae

  23. Astro-ph/0701198

  24. Astro-ph/0701198 Spectra of SN 2005bf

  25. Astro-ph/0701198v1 Spectra of SN 2005bf From left to right, the dashed lines in Figure 1 correspond to He I 5876 blueshifted by7000 km s−1, Hα 6563 blueshifted by 15,000 km s−1, and He I 6678 and 7065 blueshiftedby 7000 km s−1. He I absorptions blueshifted by about 7000 km s−1 are clearly presentat all epochs. [From careful measurements of the wavelength of the absorption minimumattributed to He I 5876, T05 noticed that the blueshift increased slightly with time. Thismay have been due to the increasing strength of the feature; all else being equal, strongerfeatures have higher blueshifts (Jeffery & Branch 1990).] The deep absorption attributed tohigh-velocity Hα at early times becomes weaker between day −20 and day −6, but a featurepersists at close to the same wavelength as late as day +5.

  26. The early spectra of GRB 060218 OT before Feb 23 Tfirst Sp is a time after GRB 060218 These are spectra with the high S/N ratio. The 6100A absorptionreaches the maximal depth at the moment UT Feb ~ 23. Here we do not take into account the early spectrum of their paper Modjaz et al. (0603377), obtained with the low S/N ratio at the FLWO 1.5m telescope 3.97 days after the burst.

  27. It is interesting that the ~6100A feature can be traced in spectra up to March,4 (see Fig. 1., Mazzali et al., astro-ph/0603567). In the same Fig.1 in Mazzali et al. (2006) this feature is deepest in the spectrum of Feb.23. This is a moment when T_eff ~7000K, which corresponds well to the temperature evolution rate outlined as early as the first day…

  28. Astro-ph/0603567 Mazzali et al. VLT (8m) Lick (3m) VLT (8m) VLT (8 m) and Lick (3m) spectra

  29. Astro-ph/0603567 Mazzali et al. Figure 1. Spectra of SN2006aj and synthetic fits. The observed spectra of SN2006aj(coloured traces) are calibrated in the V band, but elsewhere they may be distorted,hence thepoorer agreement in some of the red parts. Also, the blue part is not reliable shortward of ~ 4200 A.The synthetic spectra (black traces) were computed using our Monte Carlo spectrum synthesiscode. Because of the spectroscopic and photometric similarity to SN 2002ap, we used a similarmodel of the explosion, but in order to improve the match we reduced the masses of both oxygenand calcium significantly, and decreased Mej and EK accordingly. Our model has Mej≈2M⊙ andEK≈2 × 1051 erg. The strongest features in the spectra are due to lines of Fe II, Ti II, and in thelater phases Ca II (< 4500 A), Fe III and Fe II (near 5000 A), Si II (near 6000 A), O I (near 7500 A),and Ca II (near 8000 A). The O I and Ca II lines become stronger at more advanced epochs, andare conspicuous because they form at a roughly constant wavelength, corresponding to a velocity(~25, 000 km s−1) higher than that of other lines. This indicates the presence of a shell of material,dominated by oxygen, at velocities between about 20,000 and 25,000 km s−1. This high-velocitymaterial may result from the piling up of circumstellar material on the expanding ejecta. We modelled the spectrum by adding a small amount of mass ( 0.10M⊙) at 20,000 < v < 30,000 km s−1.

  30. SYNOW: velocity of expansion is proportional to radius! The detached case The undetached case Expanding photosphere of an SN In order to produce a peaked rather than a flat H-alpha emission component the hydrogen would have to be present down to the photosphere, rather than being confined to a detached high–velocityshell such as we have invoked for the absorption component.

  31. SN 2006aj/GRB 060218, 2006 Feb. 21.7 UT, Δt = 3.55 dThe detached case: 18000 km s-1≤ V ≤ 24000 km s-1

  32. vphot = 18000.0 vmax = 60000.0 tbb = 7200.0 ea = 2000.0 eb = 8000.0 nlam = 1000 flambda = .true. taumin = 0.01 grid = 32 zeta = 1.0 stspec = 3200.0 pwrlaw = .false. pwrlawin = 8.0 numref = 8 an = 1, 2, 26, 26, 14, 8, 20, 22, ai = 0, 0, 2, 1, 1, 0, 1, 1, tau1 = 0.250, 0.010, 0.007, 0.080, 0.030, 0.10, 0.20, 0.010, vmine = 24.00, 18.00, 24.00, 24.00, 24.00, 18.00, 18.00, 18.00, vmaxe = 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, ve = 10.00, 10.00, 20.00, 20.00, 20.00, 20.00, 20.00, 20.00, temp = 7.00, 7.00, 7.00, 7.00, 7.00, 7.00, 7.00, 7.00,

  33. SYNOW: velocity of expansion is proportional to radius! The undetached case The detached case Expanding photosphere of an SN

  34. SN 2006aj/ GRB 060218, 2006 Feb. 20.7 UT, Δt = 2.55 d.The undetached case: v = 28000 km s-1 FeIII, FeII FeIII, FeII Hα HeI SiII TiII, CaII OI

  35. in_10.dat vphot = 28000.0 vmax = 60000.0 tbb = 8200.0 ea = 2000.0 eb = 8000.0 nlam = 1000 flambda = .true. taumin = 0.01 grid = 32 zeta = 1.0 stspec = 3200.0 pwrlaw = .false. pwrlawin = 8.0 numref = 8 an = 1, 2, 26, 26, 14, 8, 20, 22, ai = 0, 0, 2, 1, 1, 0, 1, 1, tau1 = 0.250, 0.020, 0.030, 0.030, 0.020, 0.020, 1.00, 0.010, vmine = 28.00, 28.00, 28.00, 28.00, 28.00, 28.00, 28.00, 28.00, vmaxe = 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, ve = 25.00, 27.00, 20.00, 20.00, 20.00, 20.00, 20.00, 20.00, temp = 7.00, 7.00, 7.00, 7.00, 7.00, 7.00, 7.00, 7.00,

  36. in_11.dat vphot = 28000.0 vmax = 100000.0 tbb = 8200.0 ea = 2000.0 eb = 8000.0 nlam = 1000 flambda = .true. taumin = 0.01 grid = 32 zeta = 1.0 stspec = 3200.0 pwrlaw = .false. pwrlawin = 8.0 numref = 8 an = 1, 2, 26, 26, 14, 8, 20, 22, ai = 0, 0, 2, 1, 1, 0, 1, 1, tau1 = 0.250, 0.020, 0.030, 0.030, 0.020, 0.020, 1.00, 0.010, vmine = 28.00, 28.00, 28.00, 28.00, 28.00, 28.00, 28.00, 28.00, vmaxe = 100.00, 100.00, 100.00, 100.00, 100.00, 100.00, 100.00, 100.00, ve = 25.00, 27.00, 20.00, 20.00, 20.00, 20.00, 20.00,

  37. in_12.dat vphot = 28000.0 vmax = 100000.0 tbb = 8200.0 ea = 2000.0 eb = 8000.0 nlam = 1000 flambda = .true. taumin = 0.01 grid = 32 zeta = 1.0 stspec = 3200.0 pwrlaw = .false. pwrlawin = 8.0 numref = 8 an = 1, 2, 26, 26, 14, 8, 20, 22, ai = 0, 0, 2, 1, 1, 0, 1, 1, tau1 = 0.250, 0.020, 0.030, 0.030, 0.020, 0.050, 1.00, 0.010, vmine = 28.00, 28.00, 28.00, 28.00, 28.00, 28.00, 28.00, 28.00, vmaxe = 100.00, 100.00, 100.00, 100.00, 100.00, 100.00, 100.00, 100.00, ve = 25.00, 27.00, 20.00, 20.00, 20.00, 20.00, 20.00, 20.00, temp = 7.00, 7.00, 7.00, 7.00, 7.00, 7.00, 7.00, 7.00,

  38. PCyg8_in.dat vphot = 8000.0 vmax = 60000.0 tbb = 8200.0 ea = 2000.0 eb = 8000.0 nlam = 1000 flambda = .true. taumin = 0.01 grid = 32 zeta = 1.0 stspec = 3200.0 pwrlaw = .false. pwrlawin = 8.0 numref = 8 an = 1, 2, 26, 26, 14, 8, 20, 22, ai = 0, 0, 2, 1, 1, 0, 1, 1, tau1 = 1.00, 0.020, 0.030, 0.030, 0.020, 0.000, 1.00, 0.010, vmine = 8.00, 8.00, 8.00, 8.00, 8.00, 8.00, 8.00, 8.00, vmaxe = 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, 60.00, ve = 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, temp = 7.00, 7.00, 7.00, 7.00, 7.00, 7.00, 7.00, 7.00,

  39. (Sollerman et al.) T first_Sp = 3.78 d., ALFORS/NOT 2.56m Astro-ph/0603495

  40. SN 1993 J March 28.1 UT

  41. WHAT IS THE EFFECT THAT WE PREDICT: • Both luminosity (or total energy) and the wind envelope size for GRB 060218/SN 2006aj and for SN 1993J progenitors are approximately equal (see Slides ???????). • The hydrogen lines for SN 2006aj also could be observed in early spectra (as for the SN 1993J) while the photosphere of the shock was still sufficiently deep inside of this wind envelope (see Slide ???). • So, the H-lines could be observed somewhere after UVOT maximum for GRB 060218 when: the shock photosphere temperature becomes sufficiently low and hydrogen over the photosphere is much enough to create a sufficient optical depth in spectral lines.

  42. SN1993J The shock break-out 56Ni → 56Co → 56Fe → the radioactive heating Nature, 364, 507, 1993 K.Nomoto et al.

  43. SN1993J II → I b/c Lmax ~ 1045 erg/s Δ t ~ 4 h ApJ 449, L51-54, 1995Younget al. The wind envelope radius ~ 500 Rסּ

  44. SN 1993J (SN II to SN Ib type) Hε Early spectra showed an almost featureless continuum, with broad, but weak Hα and He I λ 5876 lines Hδ Hγ Hβ 1993-03-31 UT 20:30:00 He I Hα

  45. SN 1993J The spectrum of 1993-04-01UT 20:30:00

  46. SN 1993J 1993-04-15 UT 22:30:00

More Related