fizyka i biofizyka prezentacja do wyk adu 5 l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
FIZYKA i BIOFIZYKA Prezentacja do wykładu 5. PowerPoint Presentation
Download Presentation
FIZYKA i BIOFIZYKA Prezentacja do wykładu 5.

Loading in 2 Seconds...

play fullscreen
1 / 55

FIZYKA i BIOFIZYKA Prezentacja do wykładu 5. - PowerPoint PPT Presentation


  • 246 Views
  • Uploaded on

FIZYKA i BIOFIZYKA Prezentacja do wykładu 5. Elementy fizyki jądrowej. Magnetyczny rezonans jądrowy. Dr Dorota Wierzuchowska. Fizyka i chemia są ze sobą ściśle powiązane i stanowią podstawę wszystkich innych nauk przyrodniczych.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'FIZYKA i BIOFIZYKA Prezentacja do wykładu 5.' - eudora


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
fizyka i biofizyka prezentacja do wyk adu 5

FIZYKA i BIOFIZYKAPrezentacja do wykładu 5.

Elementy fizyki jądrowej.

Magnetyczny rezonans jądrowy.

Dr Dorota Wierzuchowska

slide2
Fizyka i chemia są ze sobą ściśle powiązane i stanowią podstawę wszystkich innych nauk przyrodniczych.
  • Chemia bada substancje i ich przemiany jakościowe, reakcje chemiczne na drodze których jedne związki chemiczne przechodzą w inne.
pierwiastek chemiczny atom
Pierwiastek chemiczny-atom
  • Podstawowym pojęciem w chemii jest pierwiastek chemiczny. Jest to substancja prosta, której nie da się metodami chemicznymi rozdzielić na składniki. Pierwiastek często jest definiowany jako zbiór atomów.
  • Atomy składają się z jądra i otaczających to jądro elektronów.
uk ad okresowy pierwiastk w http pomocedlaszkol isu pl id pokaz produkt id prod 22343
Układ okresowy pierwiastkówhttp://pomocedlaszkol.isu.pl/?id=pokaz_produkt&id_prod=22343
slide5
Tablica Mendelejewa w wersji anglojęzycznej, wykonana ściśle na wzór 5. edycji przygotowanej przez samego Mendelejewa w 1891 r

http://pl.wikipedia.org/wiki/Uk%C5%82ad_okresowy_pierwiastk%C3%B3w

slide6
Fizyka atomowa - dział fizyki zajmujący się stanami elektronowymi w atomie, a więc wszystkim co określa własności chemiczne ciał.
  • Fizyka jądrowa - dział fizyki zajmujący się jądrami atomów, bada budowę i stabilność jąder.
odkrycie j dra atomowego
Odkrycie jądra atomowego

W roku 1911 Rutherford, angielski fizyk i chemik wykonał eksperyment potwierdzający istnienie jadra atomowego. Cząstki alfa przepuścił przez bardzo cienką złotą folię. Rozkład kątowy rozproszonych cząstek skłonił Rutherforda do wysnucia wniosku, że cała masa oraz dodatni ładunek atomu skupiony jest w bardzo niewielkiej objętości. W ten sposób potwierdził on eksperymentalnie istnienie jądra atomowego.

eksperyment rutherforda http physics nad ru physics english el htm
Eksperyment Rutherfordahttp://physics.nad.ru/Physics/English/el.htm
slide9
Jądro atomowe to centralna część atomu zbudowana z jednego lub więcej protonów i neutronów, zwanych nukleonami. Jądra mają rozmiary rzędu 10-14 –

10-15 m, co stanowi około 1/100000 rozmiaru i ponad 99,9% masy atomu. 1cm3 materii jądrowej ma masę około 108 ton

http://pl.wikipedia.org/wiki/Atom.

j dro atomowe z x
Jądro atomowe zX

A –liczba nukleonów w jądrze

Z –liczbaprotonów w jądrze

j dro atomowe
Jądro atomowe
  • Jest układem nukleonów- protonów i neutronów. Liczba protonów określa ładunek elektryczny jądra, decyduje o tym jakiego pierwiastka chemicznego jest to atom i o przebiegu reakcji chemicznych.
  • Liczba neutronów ma pewien wpływ na przebieg reakcji chemicznych poprzez tzw. efekt izotopowy, różne izotopy tego samego pierwiastka mają nieco inne własności chemiczne i fizyczne.
tabela nuklid w
Tabela nuklidów
  • przedstawia graficznie wszystkie znane nuklidy (jądra atomowe) o określonej liczbie protonów i neutronów.
  • Izotopy-atomy danego pierwiastka różniące się liczbami masowymi.
  • Izobary-atomy o tej samej liczbie masowej
  • Izotony-atomy o tej samej liczbie neutronów
  • Izomery-o identycznej liczbie protonów i neutronów, jednakże różniące się stanem kwantowym
jednostki
Jednostki
  • Jednostka masy atomowej u została zdefiniowana jako 1/12 masy atomu węgla 12C

u=1,6605387313x10-27kg

wyrażona w elektronowoltach

u=931,48 MeV

  • Ładunek elementarny e (ładunek elektronu)

e=1,602 176 53(14)x10-19C

elektronowolt
Elektronowolt

Elektronowolt (eV) – jednostka energii stosowana w fizyce.

Jeden elektronowolt jest to energia, jaką uzyskuje elektron będąc przyspieszonym różnicą potencjałów równą 1 woltowi:

1eV=1e · 1V ≈ 1,602 176 53 ×10-19 J

1 J ≈ 6,241 509 47(53) ×1018 eV

proton
Proton
  • Przyjmuje się, że proton posiada elementarny, dodatni ładunek elektryczny i masę atomową równą 1, zapisywany jako +p1 lub H+.
  • Masa spoczynkowa:

mp = 1,67262171(29) x 10 -27 kg = 938,272029(80) MeV/c² = 1,00727646688 u

  • Spin: 1/2
  • Samotny proton to jądro 1H, proton związany z neutronem to jądro deuteru - ²H (deuteron). Liczba protonów w jądrze danego atomu to jego liczba atomowa,
neutron
Neutron
  • Neutron (z łac neuter "obojętny" ) jest obojętny elektrycznie.
  • masa spoczynkowa wynosi ok. 1,00866491578 u, czyli 1,6749272 x 10-27 kg (jest nieco większa od masy protonu).
  • Spin: 1/2

Neutrony występujące poza jądrem nie są stabilne, ale rozpadają się bardzo wolno (jak na cząstkę subatomową), jego średni czas życia to 885,7 s (ok. 15 min.):

Według tego schematu zachodzi rozpad promieniotwórczy "beta".

si y j drowe
Siły jądrowe
  • Oddziaływania silne wiążą nukleony w jądrze
  • Mają krótki zasięg, do 2x10-15m, dla odległości mniejszych niż 10-15m są siłami odpychającymi, powyżej-przyciągającymi.
  • Nie są centralne, zależą również od orientacji spinów
  • Mają właściwość „wysycania”
  • Wielkość tych sił prawie nie zależy od ładunku
modele j drowe
Modele jądrowe
  • Kroplowy-jądra są kuliste jak krople cieczy, nukleony w jądrze zachowują się jak cząsteczki w cieczy.
  • Powłokowy-nukleony wewnątrz jądra mogą przyjmować tylko stany energetyczne zgodne z energiami kolejnych powłok.
  • Kolektywny-nukleony łączą się w grupy tworząc nowe cząstki wewnątrz jądra
deficyt masy
Deficyt masy

Deficyt masy(niedobór masy, defekt masy) - różnica Δm między sumą mas nukleonów wchodzących w skład jądra atomowego, a masą jądra. Iloczyn niedoboru masy i kwadratu prędkości światła w próżni jest równy energii wiązania jądra

ΔE= Δmc2={[Zmp + (A-Z)mn]-mj}c2

gdzie:

  • nuklid zawierający N neutronów i Z protonów (N+Z = A)
  • mp=1,00727 - masa protonu w jednostkach masy atomowej
  • mn=1,00866 - masa neutronu
  • mj - masa jądra nuklidu
  • c = 3·108 m/s - prędkość światła w próżni
reakcje j drowe
Reakcja fuzji termojądrowej, jądra deuteru i trytu łączą się, powstaje jądro helu, neutron i wydzielana jest energia.Reakcje jądrowe
promieniotw rczo
Promieniotwórczość
  • Reakcje jądrowe spontaniczne- promieniotwórczość naturalna
  • Reakcje jądrowe wymuszone- promieniotwórczość „sztuczna”
prawo rozpadu promieniotw rczego
Prawo rozpadu promieniotwórczego
  • Dla każdego jądra promieniotwórczego istnieje określone prawdopodobieństwo l, że ulegnie ono przemianie promieniotwórczej w danym czasie.
  • Liczba atomów dN, które rozpadną się w ciągu krótkiego czasu dt wynosi:

dN=- Nl dt

  • Jeżeli No to liczba atomów w chwili t=0, to po czasie t pozostanie N atomów jakie się nie rozpadły

N(t)= Noe- lt

okres po owicznego rozpadu
Okres połowicznego rozpadu

Jest to czas T po jakim rozpadnie się połowa jąder istniejących w chwili czasu t=0.

No/2= Noe- lT

T=ln2/l= 0.693/l

T zawiera się w granicach od 3x10-7s do 1,4x1027 lat

aktywno a
Aktywność A

Aktywność jest to liczba przemian jądrowych DN zachodzących w czasie Dt

A=DN/Dt

Jednostką aktywności w układzie SI jest jeden bekerel -Bq. Aktywność 1Bq ma preparat w którym zachodzi w czasie 1 sekundy jeden rozpad promieniotwórczy

rozpad alfa
Rozpad alfa

Rozpad alfa (przemiana α) - przemiana jądrowa, w której emitowana jest cząstka α (jądro helu42He2+). Strumień emitowanych cząstek alfa przez rozpadające się jądra to promieniowanie alfa. W wyniku tej reakcji powstające jądro ma liczbę atomową mniejszą o 2, a liczbę masową o 4 od rozpadającego się jądra.

rozpad beta
Rozpad beta

Rozpad beta to przemiana nukleonu w inny nukleon, zachodząca pod wpływem oddziaływania słabego. Wyróżniamy nastepujące rodzaje tego rozpadu:

rozpad β − (beta minus)

rozpad β + (beta plus)

wychwyt K.

rozpad beta minus
Rozpad beta minus

Rozpad β - − polega na przemianie neutronu w proton z emisją elektronu i antyneutrina elektronowego według schematu:

rozpad beta plus
Rozpad beta plus

Rozpad β − polega na przemianie protonu w neutron z emisją pozytonu i neutrina elektronowego według schematu:

wychwyt k
Wychwyt K

Wychwyt elektronu - przemiana jądrowa, w której jeden z elektronów atomu jest przechwytywany przez proton z jądra atomowego, w wyniku czego powstaje neutron (pozostający w jądrze) i neutrino elektronowe, które jest emitowane.

promieniowanie gamma
Promieniowanie gamma

Promieniowanie gamma to wysokoenergetyczna forma promieniowania elektromagnetycznego powstające w wyniku przemian jądrowych, o energii kwantu większej od 10 keV, co odpowiada częstotliwości większej od 2,42EHz (eksaherc 1018 herca), a długości fali mniejszej od

124 pm, jonizujące i przenikliwe. Zakres ten częściowo pokrywa się z zakresem promieniowania rentgenowskiego.

promieniowanie jonizuj ce
Promieniowanie jonizujące

wszystkie rodzaje promieniowania, które wywołują jonizację ośrodka materialnego, tj. oderwanie przynajmniej jednego elektronu od atomu lub cząsteczki albo wybicie go ze struktury krystalicznej. Promieniowania alfa, beta, gamma oraz promieniowanie elektromagnetyczne o energii większej od energii światła widzialnego.

oddzia ywanie promieniowania elektromagnetycznego z materia
Oddziaływanie promieniowania elektromagnetycznego z materia
  • Jonizacja
  • Wzbudzenie optyczne (fluorescencja i fosforescencja)
  • wtórne rentgenowskie promieniowanie charakterystyczne
  • Zjawisko fotoelektryczne zewnętrzne i wewnętrzne
  • Zjawisko Comptona
  • Rozpraszanie
  • Tworzenie par
oddzia ywanie promieniowania korpuskularnego z materi
Oddziaływanie promieniowania korpuskularnego z materią

Cząstki naładowane:

  • Jonizacja bezpośrednia poprzez oddziaływania kulombowskie
  • Wzbudzenie optyczne i rentgenowskie

Cząstki nienaładowane:

  • Jonizacja wtórna
  • Powstawanie jonizujących jąder odrzutu
  • Zapoczątkowanie reakcji rozszczepienia, rozpraszanie niesprężyste, wychwyt
radiobiologia
Radiobiologia

Badanie skutków działania promieniowania na organizmy żywe

Skutki mogą być

  • genetyczne- uszkodzenie DNA
  • somatyczne- bezpośrednie uszkodzenie komórek
napromieniowanie
Napromieniowanie

może nastąpić poprzez źródła:

  • zewnętrzne- aparatura rentgenowska i izotopy wykorzystywane w medycynie, technice i przemyśle, zwiększona zawartość izotopów na niektórych terenach
  • wewnętrzne- nuklidy które zostały wprowadzone do organizmu przypadkowo lub celowo przy wykonywaniu badań medycznych
dzia anie promieniowania na organizmy ywe
Działanie promieniowania na organizmy żywe
  • Bezpośrednie- uszkodzenie cząsteczek i struktur np. zmiana kodu DNA, rozerwanie łańcucha polimerów.
  • Pośrednie- radioliza wody, produkcja wolnych rodników i wody utlenionej, utlenianie nienasyconych kwasów tłuszczowych, reakcje prowadzące do rozpadu białek, zakłócenie czynności życiowych, śmierć.
zastosowania w medycynie biologii i ochronie rodowiska
Zastosowania w medycynie, biologii i ochronie środowiska
  • W terapii nowotworów napromieniowanie zewnętrzne (bomba kobaltowa) i wewnętrzne (igły radowe)
  • Badanie struktury i funkcji narządów za pomocą substancji znakowanych
  • Metody badawcze: metoda rozcieńczeniowa i analiza aktywacyjna
ochrona przed skutkami dzia ania promieniowania
Ochrona przed skutkami działania promieniowania
  • Stosowanie osłon
  • Zachowanie bezpiecznej odległości od źródeł
  • Skrócenie czasu pracy ze źródłami promieniowania
  • Dozymetria
  • Badania okresowe
slide43
SPIN
  • Spin jest to własny, nie wynikający z ruchu danej cząstki względem innych cząstek, lecz tylko z samej natury tej cząstki, moment pędu w układzie, w którym ona spoczywa.
  • Dla elektronu, protonu czy neutronu liczba ta jest oznaczana symbolem "s" i może przyjmować wartość ułamkową ½.
spin j drowy
Spin jądrowy

Niezerowy spin jądrowy posiadają atomy o nieparzystej liczbie nukleonów (np. wodór 1-H, węgiel 13-C, azot 15-N, tlen 17-O, fluor 19-F, sód 23-Na i fosfor 31-P). W uproszczeniu spin jądrowy zawiązany jest z rotowaniem jądra wokół własnej osi i z wewnętrznym momentem pędu jądra. Każde jądro jest obdarzone dodatnim ładunkiem elektrycznym, stąd jego spin generuje bardzo słabe pole magnetyczne i jest źródłem momentu magnetycznego μ.

magnetyczny rezonans j drowy
Magnetyczny rezonans jądrowy

Podstawą zjawiska MRJ jest oddziaływanie spinów jądrowych z polami magnetycznymi:

  • stałym polem magnetycznym Bz, które jest wytwarzane magnesami,
  • zmiennym polem magnetycznym Bxy, skierowanym prostopadle do osi z
  • zmiennymi polami lokalnymi generowanymi przez sąsiednie jądra atomów oraz znajdujące się na nich chmury elektronowe.
precesja moment w magnetycznych
Precesja momentów magnetycznych
  • W polu magnetycznym orientacja wektora momentu magnetycznego jądra podlega kwantyzacji przestrzennej, dozwolone są tylko pewne ustawienia względem kierunku pola. Związane są z tym dozwolone poziomy energetyczne
  • Momenty magnetyczne wykonują precesję względem kierunku tego pola z częstością:

w= gBz

magnetyzacja
Magnetyzacja

Wypadkowy wektor magnetyzacji próbki jest złożeniem poszczególnych momentów magnetycznych jąder. Ma on kierunek osi z (zewnętrznego pola magnetycznego Bz).

warunki rezonansu
Warunki rezonansu

Po zadziałaniu impulsu prostopadłego do Bz zmiennego pola magnetycznego o częstości w następuje rezonansowe pochłanianie energii pola magnetycznego i przejścia jąder pomiędzy dozwolonymi stanami energetycznymi. Wektor magnetyzacji obraca się, maleje magnetyzacja wzdłuż osi z, pojawia się magnetyzacja prostopadła w płaszczyźnie xy

relaksacja
Relaksacja

Następnie w wyniku tzw. procesów relaksacji następuje odnowienie magnetyzacji podłużnej (relaksacja podlużna) i zanik magnetyzacji poprzecznej (relaksacja poprzeczna).

sygna zaniku swobodnej precesji
Sygnał zaniku swobodnej precesji

Rejestrowany jest tzw. sygnału zaniku swobodnej precesji (ang. Free Induction Decay, FID), który niesie w sobie informację m.in. o oddziaływaniach spinowych oraz o procesach relaksacji (pośrednio o dynamice molekularnej). Oddziaływania spinowe to przede wszystkim oddziaływania spinów jądrowych z dodatkowym polem magnetycznym, zmieniającym warunki rezonansowe w poszczególnych obszarach próbki. Dodatkowe pole, tzw. pole lokalne, wytworzone jest przez obsadzone orbitale elektronowe

obrazowanie mrj
Obrazowanie MRJ

Podstawą obrazowania jest wykorzystanie tzw. gradientów pola magnetycznego, które różnicują pole wewnątrz obrazowanego obiektu. Pozwala to na spełnienie selektywnych warunków rezonansowych i rejestrację sygnału z wybranych fragmentów obiektu. MRI jest dzisiaj podstawową metodą diagnostyczną.