1 / 57

Diamond-like Carbon for Ultra-cold Neutrons

Diamond-like Carbon for Ultra-cold Neutrons. Peter Fierlinger. E. W. Paul Scherrer Institut, Switzerland. neutron source SINQ. p-Accelerator. Synchrotron SLS. Contents. Ultra-cold neutrons (UCN) Motivation: Electric dipole moment of the neutron (nEDM)

ervin
Download Presentation

Diamond-like Carbon for Ultra-cold Neutrons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger

  2. E W Paul Scherrer Institut, Switzerland neutron source SINQ p-Accelerator Synchrotron SLS

  3. Contents • Ultra-cold neutrons (UCN) • Motivation: • Electric dipole moment of the neutron (nEDM) • Life time of the free neutron • The new UCN source at the PSI accelerator • UCN related R&D: DLC • DLC test experiment @ ILL

  4. Ultra-cold neutrons E < 300 neV, T < 3 mK, v < 7 ms-1,  >50 nm - Gravity ~ 100 neV / m - Magnetic field ~ 60 neV / T - Strong interaction: „Fermi potential“ V┴ UCN can be stored in traps for ~ 1000 s

  5. Experimental Limit: ILL-Sussex-RAL (1999): ( -1.0 ± 3.6 ) ·10-26 e·cm Predicted: d ~ 10-26 - 10-28 e.cm (MSSM) d < 10-31 e.cm (SM) nEDM spin 1/2 Magnetic moment µ AXIAL VECTOR Electric dipole moment d POLAR VECTOR T transformation P transformation A nonzero particle EDM violates P, T and, assuming CPT conservation, also CP STATISTICAL LIMIT Purcell and Ramsey, PR78(1950)807, Lee and Yang, Landau

  6. n & CKM matrix PERKEO II (885.7±1 s) Universality: without PERKEO II STATISTICAL LIMIT

  7. p-accelerator @ PSI nEDM UCN Source Pulsed operation: 8 sec on 800 sec off Cockroft-Walton: 800keV, 40mA Injector II: 72MeV, 2mA Ring cyclotron: 600MeV, 2mA,

  8. UCN tank system (~6m high) UCN storage volume, 2m3 4000 UCN/cm3 Coated walls To experiments Shutter Cold sD2 moderator n-Guide Spallation target p beam D2O moderator

  9. Storage materials low loss probability per wall collision µ long storage time µ(E) ~  high Fermi potential more UCN low spin flip probability per wall collision  polarized UCN (e.g. in nEDM) typical UCN spectrum Intensity E

  10. "bad" 58Ni Cu Fe Ni 65Cu BeO Al C Be 300 K Pb Be 70 K DLC Diamond "good" Storage materials

  11. Diamond-like Carbon „sp2“ Production:e.g. pulsed laser deposition (PLD) DENSITY Target Laser Layer Substrate „sp3“

  12. Reflectometry V┴~ < 7 m/s ~ UCN Detector v┴ φ φ Ohter methods used: XPS, NEXAFS, Raman, LaWAVE

  13. No mechanical slits • Depolarization probability  • Loss probability µ measured simultaneously: Gravity: 1 m = 100 neV Magnetic field: 60 neV/T Adiabatic condition Most common storage material: Beryllium • μ(E,,T)~ 4.10-5 (at 70 K) • β~ 5.10-6 μ, β of DLC = ? • Monte Carlo program(E) • Experimental setup • Samples • Method I: µ(T,E) and (T,E) • Method II: (T,E) DLC test experiment Gravity Material polarized UCN 1.5 T Magnet

  14. Monte Carlo program Geant4: CERN particle tracking simulation toolkit Adapted for UCN: • Fermi potential, wall reflections • Wall losses & spin flips • Absorption, scattering • Gravity & magnetic fields (space-, time-dependent) • Spin tracking

  15. Setup: Cooling Sample (1m) Coils (300 A, 200 V) Switch n+3Het+p+780keV Detector Neutrons

  16. Samples DLC on PET Substrates: Al tubes Quartz tubes Al foils PET foils Coatings: DLC, laser arc, Dresden DLC, PLD, VT Be, sputtered, PNPI & TUM 70 mm Film thickness > 100 nm ( ~ 10 x penetration depth)

  17. Method I Detector count rate: 105 1 Sample B Magnet 100 % 0 Storage B "Cleaning" 0 100 200 300 400 time [s] UCN from ILL-turbine Detector

  18. spin- flipped Fall through magnet Losses from the storage volume Simulated ! Lost neutrons Count rate 60 100 B field 100 % simulated measured 90% Magnetic field Storagetime (s) "Cleaning" Method I: cleaning spin- flipped Losses from the storage volume Simulated ! Lost neutrons decay top magnet wall loss 60 100 time (s) 100 % 90% Magnetic field B field "Cleaning"

  19. Method I: storage Potential energy Wall collisions (E) 1000 800 600 400 200 0 1000 800 600 400 200 0 1 / (s.cm_height) [neV] |B| = 1.5 T

  20. Method I: spectrum Typical # of UCN stored ~ 600 measured simulated 120 s storage 320 s storage

  21. Method I: analysis log10  up to 450 s Detector count rate 1. 100 % 0 Magnetic field 2. 100 % 0

  22. 1 1 = + m n Compare to simulation ( E ) ( E ) t t st n Method I: loss probability Measurement: tot* with

  23. Method I: results Wall loss coefficient  [1 / wall collision] x 10-4 DLC is a good choice 

  24. Method I: analysis log10 Detector count rate 1. 1. 100 % 0 Magnetic field 2. 2. 100 % 0

  25. N + N sp bg Method I: depolarization <Nbg> ~ 1 in 200 s: Poisson Statistics

  26. Method II Detector Count rate: B 105 1 Sample Magnet 100 % 0 0 100 200 300 400 time [s] UCN Detector

  27. Method II: analysis Accumulating neutrons Wall collision distribution par Production Loss 1 / (s.cm_height) Height [mm] Energy [neV]

  28. Method I & II: results Spin flip probability  [1 / wall collision] …Method I …Method II

  29. NH ~ 0.3 NC Explains also spin flips Interpretation So-called „anomalous losses“: (0 K)~ 2.10-7 theor. but: ~ 10-5 exp. Hydrogen:  = C + H

  30. Conclusions • Monte Carlo package for UCN included in GEANT4 • Loss and depolarization measured simultaneously for the first time • Hydrogen is a good candidate for the explanation of the losses • DLC is top candidate for the UCN source at PSI

  31. BACKUP

  32. Motivation: nEDM Imagine the neutron were the size of the Earth... ILL-Sussex-RAL (1999): ( -1.0 ± 3.6 ) ·10-26 e·cm Theoretical predictions: SUSY : 10-25-10-28e·cm Dx  1mm

  33. nEDM measurement Polarized UCN in a trap B0 /2 Pulse + B0 B1 Free Precession 100 s B0 ±E + /2 Pulse B0 B1

  34. UCN Transmission EDM-UCN beam at ILL: • TOF • Foil coated with • Be (black) • DLC (red) Chopper Sample UCN Detector 2 m

  35. UCN Physics in Geant4 • Fermi potential, wall reflections • Wall losses & spin-flips • Absorption, scattering • gravitational & magnetic fields (space-, time-dependent) • Numerical solution of the Bloch equation components of P after /2 flip at |B| = 1g L/ from NIM A 457 (2001), 338-346

  36. Simulated spectrum shift (1 spin component) final initial Rel. Intensity 0 30 90 Energy [neV] Filling

  37. RK4

  38. Low field transitions B0 Bearth

  39. Spin tracking Coupled equations: Treated classically „Bloch“-equation

  40. Penetration depth Energy inside the barrier …. „Penetration depth“

  41. The Magnet

  42. Neutron life time CKM (quark mixing) matrix is unitary: (885.7±1 s) PDG 2004 STATISTICAL LIMIT Coupling for Leptons = Coupling for Quarks Vud (neutr) = 0.9725±0.0013 PDG 2004 Vud (nucl) = 0.9740±0.0005

  43. Superthermal converters • Superfluid He – zero absorption cross section but needs very low temperatures ( ~ 0.5 K) (NIST, ILL, SNS) • Solid D2 – absorption lifetime 150 ms, 2 orders of magnitude higher production rate as compared with He, temperature of ~ 8K sufficient (Munich, Los Alamos, PSI) • Solid CD4 – compared with D2 more low lying rotational states – investigations at the very beginning • Solid O2– phonons and magnons excitation but temperatures below 2K needed

  44. D2 nuclear spin : S = 0,2 (ortho) and S = 1(para) Ortho-D2 : J = 0,2,4 …(rotational quantum number) Para-D2 : J = 1,3,5… Energy of the lowest rotational state: Para-D2 J =1 E = 7.5 meV Ortho-D2 J = 0 E = 0 meV Importance of high ortho-D2 concentration Deuterium Additional up-scattering channel !

  45. Maxwell spectrum vc ~ 1 km/s vth ~ 2 km/s v vUCN < 7m/s

  46. 4He

  47. Maxwell Distribution Neutron density between v and v+dv at thermal equilibrium (average velocity)

  48. Raman spectra

  49. A oder  und B A mit den elektronen B mit neutrino

  50. Maxwell Distribution Neutron density between v and v+dv at thermal equilibrium (average velocity)

More Related