1 / 59

Previous Lecture: Descriptive Statistics

Previous Lecture: Descriptive Statistics. This Lecture. Introduction to Biostatistics and Bioinformatics Data types and representations in Molecular Biology. Learning Objectives. text formats for some common genomics data types f ormatting text with tag:value pairs

erin-osborn
Download Presentation

Previous Lecture: Descriptive Statistics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Previous Lecture: Descriptive Statistics

  2. This Lecture Introduction to Biostatistics and Bioinformatics Data types and representations in Molecular Biology

  3. Learning Objectives • text formats for some common genomics data types • formatting text with tag:value pairs • basic database concepts • details of the FASTA format • Data formats in public molecular biology databases • Genbank, dbSNP • Genome Browsers: BED format • Database queries: field specific queries

  4. Biologists Collect Lots of Data • Hundreds of thousands of species • Millions of articles in scientific journals • Genetic information: • gene names • phenotype of mutants • location of genes/mutations on chromosmes • linkage (distances between genes)

  5. High Throughput lab technology • PCR • Gene expression microarrays • Rapid inexpensive DNA sequencing • Many methods of collecting genotype data • Assays for specific polymorphisms • Genome-wide SNP chips • Must have data quality assessment prior to analysis

  6. Data files • Various assay technologies/machines collect raw data in custom formats • Images • Trace files • Machine specific binary formats • Convert to textto share scientific data • Why text? • Does not require custom software to read the data • Stable for long periods of time across different computing systems (ASCII is universal) • Can be smoothly shared across many different computing systems • The WWW is built with text (html)

  7. Text has many different formats GFF3 FASTA ##gff-version 3 #!gff-spec-version 1.20 ##species_http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=7425 NC_015867.2 RefSeqcDNA_match 66086 66146 .- . ID=aln0;Target=XM_008204328.1 1 61 +; for_remapping=2;gap_count=1;num_ident=8766;num_mismatch=0;pct_coverage=100;pct_coverage_hiqual=100;pct_identity_gap=99.9886;pct_identity_ungap=100;rank=1 NC_015867.2RefSeqcDNA_match 65959 66007 .- . ID=aln0;Target=XM_008204328.1 62 110 +;for_remapping=2;gap_count=1;num_ident=8766;num_mismatch=0;pct_coverage=100;pct_coverage_hiqual=100;pct_identity_gap=99.9886;pct_identity_ungap=100;rank=1 NC_015867.2RefSeqcDNA_match 65799 65825 .- . ID=aln0;Target=XM_008204328.1 111 137 +;for_remapping=2;gap_count=1;num_ident=8766;num_mismatch=0;pct_coverage=100;pct_coverage_hiqual=100;pct_identity_gap=99.9886;pct_identity_ungap=100;rank=1 >URO1 uro1.seq Length: 2018 November 9, 2000 11:50 Type: N Check: 3854 .. CGCAGAAAGAGGAGGCGCTTGCCTTCAGCTTGTGGGAAATCCCGAAGATGGCCAAAGACAACTCAACTGTTCGTTGCTTCCAGGGCCTGCTGATTTTTGGAAATGTGATTATTGGTTGTTGCGGCATTGCCCTGACTGCGGAGTGCATCTTCTTTGTATCTGACCAACACAGCCTCTACCCACTGCTTGAAGCCACCGACAACGATGACATCTATGGGGCTGCCTGGATCGGCATATTTGTGGGCATCTGCCTCTTCTGCCTGTCTGTTCTAGGCATTGTAGGCATCATGAAGTCCAGCAGGAAAATTCTTCTGGCGTATTTCATTCTGATGTTTATAGTATATGCCTTTGAAGTGGCATCTTGTATCACAGCAGCAACACAACAAGACTTTTTCACACCCAACCTCTTCCTGAAGCAGATGCTAGAGAGGTACCAAAACAACAGCCCTCCAAACAATGATGACCAGTGGAAAAACAATG FASTQ @SRR350953.5 MENDEL_0047_FC62MN8AAXX:1:1:1646:938 length=152 NTCTTTTTCTTTCCTCTTTTGCCAACTTCAGCTAAATAGGAGCTACACTGATTAGGCAGAAACTTGATTAACAGGGCTTAAGGTAACCTTGTTGTAGGCCGTTTTGTAGCACTCAAAGCAATTGGTACCTCAACTGCAAAAGTCCTTGGCCC +SRR350953.5 MENDEL_0047_FC62MN8AAXX:1:1:1646:938 length=152 +50000222C@@@@@22::::8888898989::::::<<<:<<<<<<:<<<<::<<:::::<<<<<:<:<<<IIIIIGFEEGGGGGGGII@IGDGBGGGGGGDDIIGIIEGIGG>GGGGGGDGGGGGIIHIIBIIIGIIIHIIIIGII @SRR350953.7 MENDEL_0047_FC62MN8AAXX:1:1:1724:932 length=152 NTGTGATAGGCTTTGTCCATTCTGGAAACTCAATATTACTTGCGAGTCCTCAAAGGTAATTTTTGCTATTGCCAATATTCCTCAGAGGAAAAAAGATACAATACTATGTTTTATCTAAATTAGCATTAGAAAAAAAATCTTTCATTAGGTGT +SRR350953.7 MENDEL_0047_FC62MN8AAXX:1:1:1724:932 length=152 #.,')2/@@@@@@@@@@<:<<:778789979888889:::::99999<<::<:::::<<<<<@@@@@::::::IHIGIGGGGGGDGGDGGDDDIHIHIIIII8GGGGGIIHHIIIGIIGIBIGIIIIEIHGGFIHHIIIIIIIGIIFIG

  8. tag:value pairs • A very common way to organize text is with tag:value pairs • address: Publisher's address (usually just the city, but can be the full address for lesser-known publishers) • annote: An annotation for annotated bibliography styles (not typical) • author: The name(s) of the author(s) (in the case of more than one author, separated by and) • booktitle: The title of the book, if only part of it is being cited • chapter: The chapter number • HTML is a tag system to display text in web browsers. <b>This text is bold</b> <a href="http://www.w3schools.com">This is a link</a> <h1 style="font-family:verdana">This is a heading</h1> <p style="color:green;margin-left:20px;">This is a paragraph.</p>

  9. What is a Database? • Structured data • Information is stored in "records" and "fields" • Fields are categories • Must contain data of the same type • Records contain data that is related to one object across fields • A record does not need to have data in every field • A record is a series of tag-value pairs where fields are the tags Unique Identifier

  10. A Spreadsheet can be a Database • columnsare Fields • Rows are Records • Can search for a term within just one field • Or combine searches across several fields

  11. Spreadsheet data can be saved as tab or comma separated values Tab delimited Ovary embryo (0-3hrs) embryo (3-6hrs) embryo (6-9hrs) Pupal 0.130666 0.0178557 0.476863 6.40536 7.35556 0.443061 0.0144366 0.412562 3.87577 4.73383 0.273747 0.0752579 1.44697 22.5721 16.4197 0.0643887 0.208803 39.1049 58.8561 0.798709 8.93599 0.208607 5.28872 77.217 0.692811 0.229979 0.0298946 0.219502 2.07522 10.2703 0.0277432 0.0220337 0.738405 1.34702 6.14537 1.46693 0.0361666 3.4654 2.5313 3.20737 0.408315 0.0392186 2.53851 4.1273 3.655 0.108006 0.0572734 2.08545 10.0762 3.29876 0.151759 3.82547 485.993 530.451 1.24837 0.0793942 0.129111 5.38445 27.6188 0.23297 0.139144 0.180263 1.06842 35.8966 3.07092 gene,Ovary,embryo(0-3hrs),embryo(3-6hrs),embryo(6-9hrs),Pupal LOC100118025,0.04541333,0.006205798,0.165735055,2.226200589,2.556445228 LOC100122637,0.233690353,0.007614514,0.217603805,2.044255893,2.496835435 LOC100116733,0.033557481,0.009225546,0.177377903,2.76701782,2.012821249 LOC100120954,0.003250874,0.010542103,1.974338817,2.971542769,0.040325437 LOC100122540,0.483847049,0.01129521,0.286362403,4.180982477,0.037512862 LOC100119626,0.089661159,0.01165491,0.085576525,0.809059218,4.004048189 Scr,0.016751983,0.013304455,0.445865943,0.813361695,3.710715923 LOC100119924,0.685022497,0.016888969,1.618261922,1.182058753,1.49776786 LOC100121348,0.18959044,0.018210136,1.178691029,1.916404302,1.697104093 csv

  12. Data Formats • How to organize various types of genetic data? • Need standard formats • DNA sequence = GATC, but what about gaps, unknown letters, etc. • How many letters per line • ?? Spaces, numbers, headers, etc. • Store as a string, code as binary numbers, etc. • Use a completely different format for proteins?

  13. FASTA Format • In the process of writing a similarity searching program (in 1985), William Pearson designed a simple text format for DNA and protein sequences • The FASTA format is now universal for all databases and software that handles DNA and protein sequences One header line, starts with > with a [return] at end All other characters are part of sequence.Most software ignores spaces, carriage returns. Some ignores numbers >URO1 uro1.seq Length: 2018 November 9, 2000 11:50 Type: N Check: 3854 .. CGCAGAAAGAGGAGGCGCTTGCCTTCAGCTTGTGGGAAATCCCGAAGATGGCCAAAGACA ACTCAACTGTTCGTTGCTTCCAGGGCCTGCTGATTTTTGGAAATGTGATTATTGGTTGTT GCGGCATTGCCCTGACTGCGGAGTGCATCTTCTTTGTATCTGACCAACACAGCCTCTACC CACTGCTTGAAGCCACCGACAACGATGACATCTATGGGGCTGCCTGGATCGGCATATTTG TGGGCATCTGCCTCTTCTGCCTGTCTGTTCTAGGCATTGTAGGCATCATGAAGTCCAGCA GGAAAATTCTTCTGGCGTATTTCATTCTGATGTTTATAGTATATGCCTTTGAAGTGGCAT CTTGTATCACAGCAGCAACACAACAAGACTTTTTCACACCCAACCTCTTCCTGAAGCAGA TGCTAGAGAGGTACCAAAACAACAGCCCTCCAAACAATGATGACCAGTGGAAAAACAATG

  14. Multi-Sequence FASTA file >FBpp0074027 type=protein; loc=X:complement(16159413..16159860,16160061..16160497); ID=FBpp0074027; name=CG12507-PA; parent=FBgn0030729,FBtr0074248; dbxref=FlyBase:FBpp0074027,FlyBase_Annotation_IDs:CG12507 PA,GB_protein:AAF48569.1,GB_protein:AAF48569; MD5=123b97d79d04a06c66e12fa665e6d801; release=r5.1; species=Dmel; length=294; MRCLMPLLLANCIAANPSFEDPDRSLDMEAKDSSVVDTMGMGMGVLDPTQPKQMNYQKPPLGYKDYDYYLGSRRMADPYGADNDLSASSAIKIHGEGNLASLNRPVSGVAHKPLPWYGDYSGKLLASAPPMYPSRSYDPYIRRYDRYDEQYHRNYPQYFEDMYMHRQRFDPYDSYSPRIPQYPEPYVMYPDRYPDAPPLRDYPKLRRGYIGEPMAPIDSYSSSKYVSSKQSDLSFPVRNERIVYYAHLPEIVRTPYDSGSPEDRNSAPYKLNKKKIKNIQRPLANNSTTYKMTL >FBpp0082232 type=protein; loc=3R:complement(9207109..9207225,9207285..9207431); ID=FBpp0082232; name=mRpS21-PA; parent=FBgn0044511,FBtr0082764; dbxref=FlyBase:FBpp0082232,FlyBase_Annotation_IDs:CG32854-PA,GB_protein:AAN13563.1,GB_protein:AAN13563; MD5=dcf91821f75ffab320491d124a0d816c; release=r5.1; species=Dmel; length=87; MRHVQFLARTVLVQNNNVEEACRLLNRVLGKEELLDQFRRTRFYEKPYQV RRRINFEKCKAIYNEDMNRKIQFVLRKNRAEPFPGCS >FBpp0091159 type=protein; loc=2R:complement(2511337..2511531,2511594..2511767,2511824..2511979,2512032..2512082); ID=FBpp0091159; name=CG33919-PA; parent=FBgn0053919,FBtr0091923; dbxref=FlyBase:FBpp0091159,FlyBase_Annotation_IDs:CG33919-PA,GB_protein:AAZ52801.1,GB_protein:AAZ52801; MD5=c91d880b654cd612d7292676f95038c5; release=r5.1; species=Dmel; length=191; MKLVLVVLLGCCFIGQLTNTQLVYKLKKIECLVNRTRVSNVSCHVKAINWNLAVVNMDCFMIVPLHNPIIRMQVFTKDYSNQYKPFLVDVKIRICEVIER RNFIPYGVIMWKLFKRYTNVNHSCPFSGHLIARDGFLDTSLLPPFPQGFYQVSLVVTDTNSTSTDYVGTMKFFLQAMEHIKSKKTHNLVHN >FBpp0070770 type=protein; loc=X:join(5584802..5585021,5585925..5586137,5586198..5586342,5586410..5586605); ID=FBpp0070770; name=cv-PA; parent=FBgn0000394,FBtr0070804; dbxref=FlyBase:FBpp0070770,FlyBase_Annotation_IDs:CG12410-PA,GB_protein:AAF46063.1,GB_protein:AAF46063; MD5=0626ee34a518f248bbdda11a211f9b14; release=r5.1; species=Dmel; length=257; MEIWRSLTVGTIVLLAIVCFYGTVESCNEVVCASIVSKCMLTQSCKCELKNCSCCKECLKCLGKNYEECCSCVELCPKPNDTRNSLSKKSHVEDFDGVPELFNAVATPDEGDSFGYNWNVFTFQVDFDKYLKGPKLEKDGHYFLRTNDKNLDEAIQERDNIVTVNCTVIYLDQCVSWNKCRTSCQTTGASSTRWFHDGCCECVGSTCINYGVNESRCRKCPESKGELGDELDDPMEEEMQDFGESMGPFD How many fields? What is the key, what is the value? Does the header have tag:value encoded data?

  15. Other Standards? • Other types of important medical and genetic data may or may not have universal standards: • Genotype/haplotype • Clinical records • Gene expression • Genome annotation • Protein structure • Alignments • Phylogenetic trees

  16. SNPStats HapStat

  17. Reformatting Data Files • Much of the routine (yet annoying) work of bioinformatics involves messing around with data files to get them into formats that will work with various software • Then messing around with the results produced by that software to create a useful summary…

  18. Public Databases • In addition to your own experimental data, access to public data is essential for epidemiology • Complete genome sequences (human and pathogens/vectors) • SNPs • Genotypes • Population Sets • Supplemental data for specific Journal articles

  19. GenBank is a Database • Contains all DNA and protein sequences described in the scientific literature or collected in publicly funded research • Flatfile: Composed entirely of text • you could print the whole thing out • Each submitted sequence is a record • Had fields for Organism, Date, Author, etc. • Unique identifier for each sequence • Locus and Accession #

  20. Fields

  21. dbSNP record Reference SNP (refSNP) Cluster Report: rs1042574 Organism: human (Homo sapiens) Molecule Type: Genomic Created/Updated in build: 86/141 Map to Genome Build: 106/Weight Validation Status: byCluster Variation Class: SNV: single nucleotide variation RefSNP Alleles: C/T (FWD) Allele Origin: Ancestral Allele: C Variation Viewer: unknown Clinical Significance: NA MAF/MinorAlleleCount: NA MAF Source: HGVS Names: NC_000014.9:g.24166518C>T, NM_006084.4:c.*322C>T, NT_026437.13:g.5942995C>T >gnl|dbSNP|rs1042574|allelePos=140|totalLen=345|taxid=9606|snpclass=1|alleles='C/T'|mol=Genomic|build=138 CCTTTTTTTT TTTTWADTTT GAGATATACG CCCTCTTTCA TCTGTAAGGG ACTAGGAAAT TCCAAATGGT GTGAACCCAG GGGGCCTTTC CCTCTTCCCT GACCTCCCAA CTCTAAAGCC AAGCACTTTA TATTTTCCT Y TTAGATATTC MCTAAGGACT TAAMATAAAA TTTTATTGAA AGAGGAATCA GTATCTGATT TTCTGGGAGA AGAAGGTAGC AGTGGTCACA GATAGAGATG TAAACTTAAG AGTGGGGCAC TGGGGTTCTC TTCCTGCTGA CATCTCCAGC CTCTTTCCTC TCCTCTGCCC ACAGGTTCTG GCTAAGAKGC TGCCTGGGCC CTGTG

  22. Accession Numbers!! • Databases are designed to be searched by accession numbers (and locus IDs) • These are guaranteed to be non-redundant, accurate, and not to change. • Searching by gene names and keywords is doomed to frustration and probable failure • Neither scientists nor computers can be trusted to accurately and consistently annotate database entries • If only scientists would refer to genes by accession numbers in all published work!

  23. http://www.ncbi.nlm.nih.gov/Genbank • GenBank is managed by the National Center for Biotechnology Information (NCBI) at the NIH (part of the U.S. National Library of Medicine) • Once upon a time, GenBank mailed out sequences on CD-ROM disks a few times per year. • Now GenBank is over 150billion bases • Scientists access GenBank directly over the Web at www.ncbi.nlm.nih.gov

  24. What is GenBank? GenBank is the NIH genetic sequence database, an annotated collection of all publicly available DNA sequences (Nucleic Acids Research 2007 Jan ;35(Database issue):D21-5). There are approximately 65,369,091,950 bases in 61,132,599 sequence records in the traditional GenBank divisions and 80,369,977,826 bases in 17,960,667 sequence records in the WGS division as of August 2006.

  25. Relational Databases • Databases can be more complex than a single spreadsheet • GenBank has proteins and SNPs as well as DNA • Some fields (i.e. phosphorylation sites) apply to protein, but not DNA • Better to create a separate spreadsheet format for Protein records • Each different spreadsheet is called a Table • Different Tables are linked by key fields • (i.e. DNA and protein for same gene)

  26. Many Tables at NCBI • The NCBI hosts a huge interconnected database system that, in addition to DNA and protein, includes: • Journal Articles (PubMed) • Genetic Diseases (OMIM) • Polymorphisms (dbSNP) • Cytogenetics (CGH/SKY/FISH & CGAP) • Gene Expression (GEO) • Taxonomy • Chemistry (PubChem)

  27. Database Design A database can only be searched in ways that it was designed to be searched You can search within a specific Field in a specific Table - and sometimes can combine searches from different Fields and/or Tables (Boolean: "AND" and "OR" searches) Bad to search for "human hemoglobin" in a 'Description' field Much better to search for "homo sapiens in 'Organism' AND "HBB" in 'gene name'

  28. Web Query • Most Scientific databases have a web-based query tool • It may be simple…

  29. … or complex

  30. ENTREZis the GenBank web query tool

  31. Advanced query interface:

  32. ENTREZ has pre-computed links between Tables • Relationships between sequences are computed with BLAST • Relationships between articles are computed with "MESH" terms (shared keywords) • Relationships between DNA and protein sequences rely on accession numbers • Relationships between sequences and PubMed articles rely on both shared keywords and the mention of accession numbers in the articles.

  33. NCBI Databases contain more than just DNA & protein sequences

  34. Other Important Databases • Genomes • Proteins • Biochemical & Regulatory Pathways • Gene Expression • Genetic Variation (mutants, SNPs) • Protein-Protein Interactions • Gene Ontology (Biological Function)

  35. UCSC Genome Browser Search by gene name: or by sequence:

  36. BED format • Genome Browsers use a BED format that defines a genomic interval as positions on a reference genome. • An interval can be a anything with a location: gene, exon, binding site, region of low complexity, etc. • BED files can also specify color, width, some other formatting. chromosome start end chr1 213941196 213942363 chr1 213942363 213943530 chr1 213943530 213944697 chr2 158364697 158365864 chr2 158365864 158367031 chr3 127477031 127478198 chr3 127478198 127479365 chr3 127479365 127480532 track name="ItemRGBDemo" description="Item RGB demonstration" itemRgb="On" chr7 127471196 127472363 Pos1 0 + 127471196 127472363 255,0,0 chr7 127472363 127473530 Pos2 0 + 127472363 127473530 255,0,0 chr7 127473530 127474697 Pos3 0 + 127473530 127474697 255,0,0 chr7 127474697 127475864 Pos4 0 + 127474697 127475864 255,0,0 chr7 127475864 127477031 Neg1 0 - 127475864 127477031 0,0,255 chr7 127477031 127478198 Neg2 0 - 127477031 127478198 0,0,255 chr7 127478198 127479365 Neg3 0 - 127478198 127479365 0,0,255 chr7 127479365 127480532 Pos5 0 + 127479365 127480532 255,0,0

  37. Lots of additional data can be added as optional "tracks" - anything that can be mapped to locations on the genome

  38. Ensembl at EBI/EMBL

  39. SNPs (Single Nucleotide Polymorphisms) • Genetic variation • Can be alleles of genes • also differences in non-coding regions collected from genome sequencing of different individuals • dbSNP at the NCBI - all public SNP data • SNP Consortium at CSHL - high quality set

  40. KEGG: Kyoto Encylopedia of Genes and Genomes • Enzymatic and regulatory pathways • Mapped out by EC number and cross-referenced to genes in all known organisms (wherever sequence information exits) • Parallel maps of regulatory pathways

  41. NCI BioCarta

More Related