330 likes | 597 Views
DO – BOD – COD. Sigid Hariyadi. Dept. Manajemen Sumberdaya Perairan - IPB. Dissolved Oxygen (DO). TINGKAT JENUH (SATURASI) OKSIGEN TERLARUT:. http://www.bbc.co.uk/schools/gcsebitesize/science/images/50_composition_of_the_earth.gif.
E N D
DO – BOD – COD Sigid Hariyadi Dept. Manajemen Sumberdaya Perairan - IPB
Dissolved Oxygen (DO) TINGKAT JENUH (SATURASI) OKSIGEN TERLARUT:
http://www.bbc.co.uk/schools/gcsebitesize/science/images/50_composition_of_the_earth.gifhttp://www.bbc.co.uk/schools/gcsebitesize/science/images/50_composition_of_the_earth.gif http://eesc.columbia.edu/courses/ees/slides/climate/gas_comp.gif
FAKTOR KELARUTAN / TINGKAT SATURASI OKSIGEN: • Efekketinggian (altitude) : • ketinggianbertambah, tekananparsial gas menurun, kelarutan gas berkurang • ketinggiantingkatberkurangnyakelarutan • 0 - 600 m 4 % per 300 m • 600 - 1500 m 3 % per 300 m • 1500 - 3000 m 2,5 % per 300 m • Efektemperatur : temperaturmeningkat -- kelarutanberkurang • Efeksalinitas : adanyaberbagai mineral terlarut -- menurunkankelarutan gas. • tk. kejenuhan gas dalam air laut, 18 - 20 % lebihrendahdaripadadalamakuades.
TINGKAT SATURASI O2 DI PERAIRAN LAUT Kandungan chloride (Cl) dihitung berdasarkan nilai salinitas : S %o = 0,030 + 1,805 Cl (%o) atau S (ppm) = 30 + 1,805 Cl (ppm)
Dissolved Oxygen (DO) • Oksigen adalah gas terlarut dalam air • bila sampel terekspose ke udara DO bisa berkurang • atau bertambah dari seharusnya • pengambilan sampel utk titrasi perlu alat khusus DISTRIBUSI VERTIKAL O2 • kondisi kelarutan • hidrodinamika -- pergerakan air • input fotosintesis • penggunaan oleh biota & • proses-proses kimia dipengaruhi oleh: Sigid Hariyadi – 2005/2008 Bottle train sampler
Prinsip penentuan DO (metode Winkler/Iodometri): Sigid Hariyadi – 2005/2008 endapan coklat • bila tidak ada Oksigen: endapan putih proporsional dg jumlah O2 yang ada penambahan asam biru indikator tak berwarna
Modifikasi metode Winkler/Iodometri: Flokulasi alum : 10% K2SO4Al2(SO4)3 & 35% NaOH bila air keruh Sulfamic acid : NH2SO2OH bila kadar nitrit tinggi azide alsterberg : NaN3 bila kadar nitrit & bhn organik tinggi Pomeroy – Kirscman – Alsterberg : penggunaan NaI (6 N) dan NaOH (10N) sbg pengganti NaOH + KI bila kadar oksigen lewat jenuh (over saturated) Sigid Hariyadi – 2005/2008
Pengukuran dgn DO-meter: • Warming up (on & biarkan bbrp menit) • Kalibrasi alat pada angka nol (zero adjustment) • Kalibrasi alat pada “red line” (red line adjusment) • Kalibrasi alat thd kadar O2 udara pada temperatur dan tekanan udara (atau ketinggian tempat) Standardisasi dgn metode Winkler pd sampel yg sama (scr periodik) Prinsip Pengukuran: Jarum penunjuk skala / digital Tekanan O2 dlm air Sensor/ membran arus Sigid Hariyadi – 2005/2008
Botol BOD Sigid Hariyadi – 2005/2008
(Biological) BOD (Biochemical Oxygen Demand): ( DOi - DO5 ) mg/L • Inkubasi sampel dlm botol BOD pada 20oC selama 5 hari shg O2 terlarut pd hari ke-5 masih ada & terukur • Perlu pengenceran yg cermat & aerasi Botolgelap Inkubasi 20oC 5 hari DOi SigidHariyadi – 2005/2007 DO5
Senyawa pengganggu: • Bahan beracun: Hg, Cr6+, Cl2 • Kurangnya nutrien • Kurangnya mikroorganisme/bakteri • pH < 6½ atau pH > 8½ SigidHariyadi – 2005/2007
BOD decomposition rates vary widely Decaying phytoplanton biomass BOD5 Municipal, industrial BOD loads DO Consumed (mg/l) Black water organic matter Sigid Hariyadi – 2005/2008 Time 5 days
BOD decomposition rates vary widely Black water organic matter Municipal, industrial BOD loads DO Consumed (mg/l) Decaying phytoplanton biomass Sigid Hariyadi – 2005/2008 Time 50 days 5 days
Pre – treatment: Penambahan Nutrien & Pengenceran Sigid Hariyadi – 2005/2008
BOD (Biochemical Oxygen Demand): BOD3 inkubasi pada 30 oC selama 3 hari (Tropik) Nilai BOD : • Jenis dan jumlah bahan organik terlarut & tersuspensi (koloid) • Jenis dan jumlah (komposisi) mikroorganisme pengurai • kecukupan oksigen • upayakan nilai DO5(end) sekitar 1 mg/L • sebaiknya selisih DO berkisar 5 – 7 mg/L Pengenceran: • mengubah pH, seluruhaktivitasionik • mengubahaktivitasorganik • mengubahsalinitas lingkunganfisik-kimia- biologi air sampel SigidHariyadi – 2005/2007
From: DHV Consultants BV & DELFT HYDRAULICS, 1999. Training module # WQ - 15 Understanding biochemical oxygen demand test. Hydrology Project Technical Assistance.New Delhi
COD (Chemical Oxygen Demand): potassium dichromate • Bhn organik dioksidasi dg K2Cr2O7 pada kondisi asam & panas • Kelebihan K2Cr2O7 dititrasi dg FAS (back titration) dg indikator feroin Sigid Hariyadi – 2005/2008 Ferrous Ammonium Sulfate • perlu larutan blanko • senyawa pengganggu: Cl (air laut), NO2- sulfamic acid + HgSO4 (200 mg/L per 1000 mg/L chloride) S %o = 0,030 + 1,805 Cl (%o) atau S (ppm) = 30 + 1,805 Cl (ppm) Contoh : S= 30 %o = 30 000 ppm Cl = 16603,88 ppm 3,321 g HgSO4 per liter sampel
Reflux, untuk penentuan COD Sigid Hariyadi – 2005/2008
Wastewater type BOD5 (mg/L) COD (mg/L) Tomato processing 450 - 1,600 650 - 2,300 Corn processing 1,600 - 4,700 3,400 -10,100 Cherry processing 660 - 1,900 1,200 - 3,800 Poultry plant processing 150 - 2,400 200 - 3,200 Milk plant processing 940 - 4,790 1,240 - 7,800 Becker, 2000. University of Maryland
Baku mutu di perairan: → air baku minum → rekreasi air → budidaya ikan, ternak → irigasi pertanian SigidHariyadi
Berdasarkan prinsip analisisnya, maka dapat dikatakan bahwa: • COD menggambarkan jumlah bahan organik total, baik yang mudah urai maupun yang sulit urai • BOD menggambarkan bahan organik mudah urai • Nilai permanganat (TOM-total organic matter) TIDAK pernah lebih besar daripada nilai COD, karena oksidator yang digunakan pada analisis COD lebih kuat • TVS (total volatile solids) juga menggambarkan bahan organik berdasarkan prinsip analisis pembakaran residu organik sampel pada suhu tinggi (550oC) dan gravimetri • Parameter bahan organik lainnya adalah TOC (total organic carbon) SigidHariyadi
/ BOD COD rasio antara bahan organik mudah urai dgn bahan organik total/sulit urai COD ≥ BOD COD ≥ TOM Total Organic Matter oxidator: KMnO4 COD TOM TVS Total Volatile Solid BOD • bahanorganikdibakar • tidakmengukurOksigenekuivalensi • dapatdihubungkandgn BOD Total Organic Carbon TOC SigidHariyadi
TOC: Total Carbon (TC) – all the carbon in the sample, including both inorganic and organic carbon Total Inorganic Carbon (TIC) – often referred to as inorganic carbon (IC), carbonate, bicarbonate, and dissolved carbon dioxide (CO2); a material derived from non-living sources. Total Organic Carbon (TOC) – material derived from decaying vegetation, bacterial growth, and metabolic activities of living organisms or chemicals. Non-Purgeable Organic Carbon (NPOC) – commonly referred to as TOC; organic carbon remaining in an acidified sample after purging the sample with gas. Purgeable (volatile) Organic Carbon (POC) – organic carbon that has been removed from a neutral , or acidified sample by purging with an inert gas. These are the same compounds referred to as Volatile Organic Compounds (VOC) and usually determined by Purge and Trap Gas Chromatography. Dissolved Organic Carbon (DOC) – organic carbon remaining in a sample after filtering the sample, typically using a 0.45 micrometer filter. Suspended Organic Carbon – also called particulate organic carbon (PtOC); the carbon in particulate form that is too large to pass through a filter.
TOC: Analysis of TOC: Acidification Oxidation Detection and Quantification Acidification : The removal and venting of IC and POC gases from the liquid sample by acidification and sparging occurs in the following manner. Oxidation : The second stage is the oxidation of the carbon in the remaining sample in the form of carbon dioxide (CO2) and other gases. Modern TOC analyzers perform this oxidation step by several processes: High Temperature Combustion High temperature catalytic (HTCO) oxidation Photo-oxidation alone Thermo-chemical oxidation Photo-chemical oxidation Electrolytic Oxidation High temperature combustion: Prepared samples are combusted at 1,350o C in an oxygen-rich atmosphere. All carbon present converts to carbon dioxide, flows through scrubber tubes to remove interferences such as chlorine gas, and water vapor, and the carbon dioxide is measured either by absorption into a strong base then weighed, or using an Infrared Detector.[3] Most modern analyzers use non-dispersive infrared (NDIR) for detection of the carbon dioxide. Detection and quantification: Accurate detection and quantification are the most vital components of the TOC analysis process. Conductivity and non-dispersive infrared (NDIR) are the two common detection methods used in modern TOC analyzers.
Thanks Danke