500 likes | 695 Views
Seminar biometrics and cryptography. Introduction. Fuzzy Identity Based Encryption based on the paper of Amit Sahai and Brent Waters by : Guido Simon. Seminar biometrics and cryptography. Content. Motivation / Abstract Identity based encryption Fuzzyfying identities
E N D
Seminar biometricsandcryptography Introduction Fuzzy Identity Based Encryptionbased on thepaperof Amit Sahaiand Brent Watersby: Guido Simon Fuzzy Identity Based Encryption
Seminar biometricsandcryptography Content • Motivation / Abstract • Identity basedencryption • Fuzzyfyingidentities • Fuzzy Identity basedencryption • Overview • Preliminaries • Shamir’sSecret Sharing • Bilinear Maps • Lagrange coefficient • Key Generation • Encryption / Decryption • Encryption • Decryption • Explanation • Extension ofthescheme • Encryption • Decryption • Security • Security model • Definitions • Proof • Conclusion Fuzzy Identity Based Encryption
Seminar biometricsandcryptography Content Part 1: Motivation / Abstract Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.1 IBE Scheme Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.1 IBE Scheme • Nokeyexchange in advance Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.1 IBE Scheme • Nokeyexchange in advance • Usetheidentityofrecipientaskey Fuzzy Identity Based Encryption
Seminar biometricsandcryptography IBE Scheme • Nokeyexchange in advance • Usetheidentityofrecipientaskey • Decryptbyfetching a keyfrom PKG Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.1 IBE Scheme Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.1 IBE Scheme Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.2 FuzzyfyingIdentitys • Identities becomesetsof Attributes • Example: IDenc={Student,ComputerScience,Crypto} Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.2 FuzzyfyingIdentitys • Identities becomesetsof Attributes • Example: IDenc={Student,ComputerScience,Crypto} • IDdec = {Student,Male,ComputerScience,Crypto,Graphics} Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.2 FuzzyfyingIdentitys • Onecanencryptforsomepublicidentity ⍵ • Decryptionwith an identity ⍵‘ ⧧ ⍵ possible • If ⍵ and ⍵‘ are „closeenough“ Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.2 FuzzyfyingIdentitys • Onecanencryptforsomepublicidentity ⍵ • Decryptionwith an identity ⍵‘ ⧧ ⍵ possible • If ⍵ and ⍵‘ are „closeenough“ • So there must beerrortolerance • Error tolerancemakesitsuitableforbiometrics • Usebiometricdetailsasattributes Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.3 Fuzzy IBE Scheme Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.3 Fuzzy IBE Scheme Key Attribute Comparison Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.3 Fuzzy IBE Scheme Key Attribute Comparison Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 1.4 Overview A shortoverview: Biometricidentitiesare PUBLIC, usedforencryption But also I usemybiometricfordecryption – Howthat? As in IBE schemeabove, the Server generates a private Key forme – togetit, i havetoauthenticatewithmy biometricidentity. Becausethis ID ispublic, theschemerelies on a „well trainedoperator“ todetectimitationsofidentites. Fuzzy Identity Based Encryption
Seminar biometricsandcryptography Content Part 2: Preliminaries Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 2.1 Bilinear Maps Definition fromthepaper: The firstcondition will beused in thefurthersteps Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 2.2 Shamir‘ssecretsharing • ProposedbyShamir in 1979 • Allowstoshare ONE secretamong N paricipants • Ofwhich D manyhavetocollude in order todecrypt • Uses Lagrange polynomialinterpolation • HOW? • The „dealer“ chooses a randompolynomial p ofdegree D-1 • The absolute partof p isthesecret • He computes N randompoints p(x) anddistributes • D ofthemareneededforinterpolation Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 2.2 Shamir‘ssecretsharing • The „dealer“ chooses a randompolynomial p ofdegree D-1 • The absolute partof p isthesecret • He computes N randompoints p(x) anddistributes • D ofthemareneededforinterpolation Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 2.3 Lagrange coefficient Fuzzy Identity Based Encryption
Seminar biometricsandcryptography Content Part 3: Key generation (Server-side) Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 3 Key generation Key Generation (Server side) Universeofidentity-attributes must bedefined Toget a uniquemapping, takethefirst Now a y ischosenrandomlyfrom Thenthepublicparametersare: Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 3 Key generation Togeneratethekeyfor ⍵ a polynomial q ofdegree d-1 ischosenrandomly. Thenthe private keyis: q(0) must beequalto y Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 3 Key generation Togeneratethekeyfor ⍵ a polynomial q ofdegree d-1 ischosenrandomly. Thenthe private keyis: Thisisonekeyforeachattribute D1 D2 D3 D4 D5 D6 Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 3 Key generation Danger: Collusionattacks Message isencryptedfor d>=4 Attributes usedfor ENC User 1 User 2 User 1 & User 2, d>=4 Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 3 Key generation Danger: Collusionattacks Message isencryptedfor d>=4 Attributes usedfor ENC User 1 User 2 User 1 & User 2, d>=4 Topreventcollusionattacks, choose a different polynomial q foreachidentity Fuzzy Identity Based Encryption
Seminar biometricsandcryptography Toyexample Fuzzy Identity Based Encryption
Seminar biometricsandcryptography Content Part 4: Encryption / Decryption(clientside) Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 4.1 Encryption (smalluniverse) Rememberthepublic Key: Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 4.2 Decryption(clientside) Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 4.2 Decryption(clientside) • Notation spy: • E‘=MYs • Ei=Tis • i= Attr. index • S=subsetof ID • q()=rnd. Poly. • Di=priv. keys • s randomfixed • y randomfixed • M message • Δ: lagrangecoeff. Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 4.3 Explanation • Notation spy: • E‘=MYs • Ei=Tis • i= Attr. index • S=subsetof ID • q()=rnd. Poly. • Di=priv. keys • s randomfixed • y randomfixed • M message • Δ: lagrangecoeff. Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 4.3 Explanation Nowthepolynomialinterpolationtakesplace in theexponent: • Notation spy: • E‘=MYs • Ei=Tis • i= Attr. index • S=subsetof ID • q()=rnd. Poly. • Di=priv. keys • s randomfixed • y randomfixed • M message • Δ: lagrangecoeff. Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 4.4 Extension ofthescheme In priorconstructionsizeofpublicparameters (Universeandt‘s) growlinearlywiththenumberofattributes in theuniverse Modificationoftheschemethatuses all elementsofasuniverse, andonlygrows in parameter n, whichdenotesthe max. size Identity wecanuse Usefullsideeffect: Onecanuseanystringasattribute Forthatweonlyneed a hash-functiontomap a stringtotheuniverse: The constructionissimilartotheconstructionbefore Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 4.4 Extension oftheScheme Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 4.4 Extension oftheScheme The private keyconsistsoftwosets Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 4.5 Encryption ischosenrandomly Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 4.6 Decryption Fuzzy Identity Based Encryption
Seminar biometricsandcryptography Content Part 5: Security Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 5.1 Definitions • sdfsdfsd Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 5.2 Security Model • sdfsdfsd Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 5.3 Proof Fuzzy Identity Based Encryption
Seminar biometricsandcryptography Content Part 6: Conclusion Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 6 Conclusion • Public keyencryptionwithoutpriorkeyexchange • Onlyusersidentityisneeded • Identities must beunique • Identities consistofattributes – whichmaybearbitrarystrings, but also biometricsarepossible Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 6 Conclusion • Public keyencryptionwithoutpriorkeyexchange • Onlyusersidentityisneeded • Identities must beunique • Identities consistofattributes – whichmaybearbitrarystrings, but also biometricsarepossible • Relies on a PKG, which must be a fullytrustedserver • Biometricauthenticationtoobtainthe private keys Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 6 Conclusion • Public keyencryptionwithoutpriorkeyexchange • Onlyusersidentityisneeded • Identities must beunique • Identities consistofattributes – whichmaybearbitrarystrings, but also biometricsarepossible • Relies on a PKG, which must be a fullytrustedserver • Biometricauthenticationtoobtainthe private keys • Relies on a well trainedofficertodetectimitations • Theoreticalsecurityisproven • Schemecouldbebrokenbyattackingtheofficer Fuzzy Identity Based Encryption
Seminar biometricsandcryptography 2.1 Standard Identity based Encryption Fuzzy Identity Based Encryption