1 / 27

Validation of Geant4 electromagnetic and hadronic models against proton data

Validation of Geant4 electromagnetic and hadronic models against proton data. G.A.P. Cirrone 1 , G. Cuttone 1 , F. Di Rosa 1 , S. Guatelli 1 , B. Mascialino 2 , M.G. Pia 1 , G. Russo 2 1 INFN LNS, Catania, Italy 2 INFN Genova, Italy. IEEE Nuclear Science Symposium

emilypeters
Download Presentation

Validation of Geant4 electromagnetic and hadronic models against proton data

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Validation of Geant4 electromagnetic and hadronic models against proton data G.A.P. Cirrone1, G. Cuttone1, F. Di Rosa1, S. Guatelli1, B. Mascialino2, M.G. Pia1, G. Russo2 1INFN LNS, Catania, Italy 2INFN Genova, Italy IEEE Nuclear Science Symposium San Diego, 30 October – 4 November 2006

  2. Geant4 Toolkit Wide set of physics processes and models Versatility of configuration according to use cases Provide objective criteria to evaluate Geant4 physics models • Document their precisionagainst experimental data • Test allGeant4 physics models systematically • Quantitative testswith rigorous statistical methods How to choose the most appropriate model for my simulation?

  3. K. Amako et al., Comparison of Geant4 electromagnetic physics models against the NIST reference dataIEEE Trans. Nucl. Sci., Vol. 52, Issue 4, Aug. 2005, pp. 910-918 • Adopt the same method also for hadronic physics validation • address all modeling options • start from the bottom (low energy) • progress towards higher energy based on previous sound assessments • statistical analysis of compatibility with experimental data • Guidance to users based on objective ground • not only “educated-guess” PhysicsLists Statistical Toolkit Goodness-of-Fit test Quantitatitative comparison of experimental - simulated distributions

  4. Medical Physics High Energy Physics Space Science Astronauts’ radiation protection LHC Radiation Monitors Oncological radiotherapy Proton Bragg peak • Compare various Geant4 electromagnetic models • Assess lowest energy range of hadronic interactions • elastic scattering • pre-equilibrium + nuclear deexcitation • to build further validation tests on solid ground • Results directly relevant to various experimental use cases

  5. Standard Low Energy – ICRU 49 Low Energy – Ziegler 1977 Low Energy – Ziegler 1985 Low Energy – Ziegler 2000 New “very low energy” models Parameterized (à la GHEISHA) Nuclear Deexcitation Default evaporation GEM evaporation Fermi break-up Pre-equilibrium Precompound model Bertini model Elastic scattering Parameterized models Bertini Intra-nuclear cascade Bertini cascade Binary cascade Relevant Geant4 physics models Hadronic Electromagnetic Subset of results shown here Full set of results in publication coming shortly

  6. Resolution 100 m 2 mm Markus Chamber Sensitive Volume = 0.05 cm3 Experimental data CATANA hadrontherapy facility in Catania, Italy • high precision experimental data satisfying rigorous medical physics protocols • Geant4 Collaboration members Validation measurements Markus Ionization chamber

  7. Geant4 simulation Accurate reproduction of the experimental set-up This is the most difficult part to achieve a quantitative Geant4 physics validation Geometry and beam characteristics must be known in detail and with high precision Ad hoc beam line set-up for Geant4 validation to enhance peculiar effects of physics processes Eproton = 63.5 MeV sE = 300 keV

  8. Electromagnetic processes Electromagnetic options • Standard EM • Low Energy EM – ICRU 49 • Low Energy EM – Ziegler 1977 • Low Energy EM – Ziegler 1985 • Low Energy EM – Ziegler 2000

  9. Standard EM Electromagnetic processes • Standard EM: p, ions, g, e- e+ 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm

  10. LowE EM – ICRU49 Electromagnetic processes • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm

  11. LowE EM – Ziegler 1977 Electromagnetic processes • Low Energy EM – Ziegler 1977: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm

  12. LowE EM – Ziegler 1985 Electromagnetic processes • Low Energy EM – Ziegler 1985: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ 1 M events Subject to further investigation Geant4 Experimental data mm

  13. LowE EM – Ziegler 2000 Electromagnetic processes • Low Energy EM – Ziegler 2000: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ 1 M events Subject to further investigation Geant4 Experimental data mm

  14. Best EM option: LowE – ICRU49 Selected for further EM + Hadronic tests Electromagnetic processes Summary CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test

  15. Electromagnetic processes +Elastic scattering Elastic scattering options • HadronElasticprocess with LElasticmodel • HadronElasticprocess with BertiniElasticmodel • UHadronElasticprocess with HadronElasticmodel

  16. LowE EM – ICRU49 EM + Elastic scattering LElastic • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElastic with LElastic 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm

  17. LowE EM – ICRU49 EM + Elastic scattering HadronElastic • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • UHadronElastic with HadronElastic 0.5 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm

  18. Electromagnetic processes +Elastic scattering+Hadronic inelastic scattering Hadronic Inelastic options • Precompound with Default Evaporation • Precompound with GEM Evaporation • Precompound with Default Evaporation + Fermi Break-up • Bertini

  19. LowE EM – ICRU49 EM + hadronic physics LElastic Precompound default • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElastic with LElastic • Precompound with Default Evaporation 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm

  20. Standard EM EM + hadronic physics LElastic Precompound default • Standard EM: p, ions, g, e- e+ • HadronElastic with LElastic • Precompound with Default Evaporation 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm

  21. LowE EM – ICRU49 EM + hadronic physics HadronElastic Precompound default • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • UHadronElastic with HadronElastic Precompound with Default Evaporation 0.5 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm

  22. LowE EM – ICRU49 EM + hadronic physics LElastic Precompound with GEM Evaporation • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElastic with LElastic • Precompound with GEM Evaporation 0.5 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm

  23. LowE EM – ICRU49 EM + hadronic physics LElastic Precompound with Fermi Break-up • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElastic with LElastic • Precompound with Fermi Break-up 0.5 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm

  24. LowE EM – ICRU49 EM + hadronic physics LElastic Bertini Inelastic • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElastic with LElastic • Bertini Inelastic 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm

  25. LowE EM – ICRU49 EM + hadronic physics BertiniElastic Bertini Inelastic • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElasticwith BertiniElastic • Bertini Inelastic 0.5 M events CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test Geant4 Experimental data mm

  26. Electromagnetic + Hadronic Summary • Precise electromagnetic physics • Good elastic scattering model • Good pre-equilibrium model Key ingredients

  27. Conclusion Systematic, quantitative validation of all Geant4 electromagnetic and hadronic models in the energy range < 100 MeV against high precision experimental data Document Geant4 simulation accuracy Provide guidance for Geant4 use based on objective ground Selection of Geant4 physics models (aka PhysicsList) based on quantitative experimental validation, rather than just “educated guess” ...2-year project to get there Publication coming soon with complete results

More Related