270 likes | 277 Views
Validation of Geant4 electromagnetic and hadronic models against proton data. G.A.P. Cirrone 1 , G. Cuttone 1 , F. Di Rosa 1 , S. Guatelli 1 , B. Mascialino 2 , M.G. Pia 1 , G. Russo 2 1 INFN LNS, Catania, Italy 2 INFN Genova, Italy. IEEE Nuclear Science Symposium
E N D
Validation of Geant4 electromagnetic and hadronic models against proton data G.A.P. Cirrone1, G. Cuttone1, F. Di Rosa1, S. Guatelli1, B. Mascialino2, M.G. Pia1, G. Russo2 1INFN LNS, Catania, Italy 2INFN Genova, Italy IEEE Nuclear Science Symposium San Diego, 30 October – 4 November 2006
Geant4 Toolkit Wide set of physics processes and models Versatility of configuration according to use cases Provide objective criteria to evaluate Geant4 physics models • Document their precisionagainst experimental data • Test allGeant4 physics models systematically • Quantitative testswith rigorous statistical methods How to choose the most appropriate model for my simulation?
K. Amako et al., Comparison of Geant4 electromagnetic physics models against the NIST reference dataIEEE Trans. Nucl. Sci., Vol. 52, Issue 4, Aug. 2005, pp. 910-918 • Adopt the same method also for hadronic physics validation • address all modeling options • start from the bottom (low energy) • progress towards higher energy based on previous sound assessments • statistical analysis of compatibility with experimental data • Guidance to users based on objective ground • not only “educated-guess” PhysicsLists Statistical Toolkit Goodness-of-Fit test Quantitatitative comparison of experimental - simulated distributions
Medical Physics High Energy Physics Space Science Astronauts’ radiation protection LHC Radiation Monitors Oncological radiotherapy Proton Bragg peak • Compare various Geant4 electromagnetic models • Assess lowest energy range of hadronic interactions • elastic scattering • pre-equilibrium + nuclear deexcitation • to build further validation tests on solid ground • Results directly relevant to various experimental use cases
Standard Low Energy – ICRU 49 Low Energy – Ziegler 1977 Low Energy – Ziegler 1985 Low Energy – Ziegler 2000 New “very low energy” models Parameterized (à la GHEISHA) Nuclear Deexcitation Default evaporation GEM evaporation Fermi break-up Pre-equilibrium Precompound model Bertini model Elastic scattering Parameterized models Bertini Intra-nuclear cascade Bertini cascade Binary cascade Relevant Geant4 physics models Hadronic Electromagnetic Subset of results shown here Full set of results in publication coming shortly
Resolution 100 m 2 mm Markus Chamber Sensitive Volume = 0.05 cm3 Experimental data CATANA hadrontherapy facility in Catania, Italy • high precision experimental data satisfying rigorous medical physics protocols • Geant4 Collaboration members Validation measurements Markus Ionization chamber
Geant4 simulation Accurate reproduction of the experimental set-up This is the most difficult part to achieve a quantitative Geant4 physics validation Geometry and beam characteristics must be known in detail and with high precision Ad hoc beam line set-up for Geant4 validation to enhance peculiar effects of physics processes Eproton = 63.5 MeV sE = 300 keV
Electromagnetic processes Electromagnetic options • Standard EM • Low Energy EM – ICRU 49 • Low Energy EM – Ziegler 1977 • Low Energy EM – Ziegler 1985 • Low Energy EM – Ziegler 2000
Standard EM Electromagnetic processes • Standard EM: p, ions, g, e- e+ 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm
LowE EM – ICRU49 Electromagnetic processes • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm
LowE EM – Ziegler 1977 Electromagnetic processes • Low Energy EM – Ziegler 1977: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm
LowE EM – Ziegler 1985 Electromagnetic processes • Low Energy EM – Ziegler 1985: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ 1 M events Subject to further investigation Geant4 Experimental data mm
LowE EM – Ziegler 2000 Electromagnetic processes • Low Energy EM – Ziegler 2000: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ 1 M events Subject to further investigation Geant4 Experimental data mm
Best EM option: LowE – ICRU49 Selected for further EM + Hadronic tests Electromagnetic processes Summary CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test
Electromagnetic processes +Elastic scattering Elastic scattering options • HadronElasticprocess with LElasticmodel • HadronElasticprocess with BertiniElasticmodel • UHadronElasticprocess with HadronElasticmodel
LowE EM – ICRU49 EM + Elastic scattering LElastic • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElastic with LElastic 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm
LowE EM – ICRU49 EM + Elastic scattering HadronElastic • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • UHadronElastic with HadronElastic 0.5 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm
Electromagnetic processes +Elastic scattering+Hadronic inelastic scattering Hadronic Inelastic options • Precompound with Default Evaporation • Precompound with GEM Evaporation • Precompound with Default Evaporation + Fermi Break-up • Bertini
LowE EM – ICRU49 EM + hadronic physics LElastic Precompound default • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElastic with LElastic • Precompound with Default Evaporation 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm
Standard EM EM + hadronic physics LElastic Precompound default • Standard EM: p, ions, g, e- e+ • HadronElastic with LElastic • Precompound with Default Evaporation 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm
LowE EM – ICRU49 EM + hadronic physics HadronElastic Precompound default • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • UHadronElastic with HadronElastic Precompound with Default Evaporation 0.5 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm
LowE EM – ICRU49 EM + hadronic physics LElastic Precompound with GEM Evaporation • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElastic with LElastic • Precompound with GEM Evaporation 0.5 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm
LowE EM – ICRU49 EM + hadronic physics LElastic Precompound with Fermi Break-up • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElastic with LElastic • Precompound with Fermi Break-up 0.5 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm
LowE EM – ICRU49 EM + hadronic physics LElastic Bertini Inelastic • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElastic with LElastic • Bertini Inelastic 1 M events Geant4 Experimental data CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test mm
LowE EM – ICRU49 EM + hadronic physics BertiniElastic Bertini Inelastic • Low Energy EM – ICRU49: p, ions • Low Energy EM – Livermore: g, e- • Standard EM : e+ • HadronElasticwith BertiniElastic • Bertini Inelastic 0.5 M events CvM Cramer-von Mises test KS Kolmogorov-Smirnov test AD Anderson-Darling test Geant4 Experimental data mm
Electromagnetic + Hadronic Summary • Precise electromagnetic physics • Good elastic scattering model • Good pre-equilibrium model Key ingredients
Conclusion Systematic, quantitative validation of all Geant4 electromagnetic and hadronic models in the energy range < 100 MeV against high precision experimental data Document Geant4 simulation accuracy Provide guidance for Geant4 use based on objective ground Selection of Geant4 physics models (aka PhysicsList) based on quantitative experimental validation, rather than just “educated guess” ...2-year project to get there Publication coming soon with complete results