1 / 24

Rock Fluid Properties PGE 363 By Dr. Eissa Mohamed Shokir

COURSE DESCRIPTION. Systematic theoretical and laboratory study of physical properties of petroleum reservoir rocks Lithology Porosity Compressibility Permeability Fluid saturations Capillary characteristics Rock stress Fluid-rock interaction. Course ObjectivesBy the last day of cla

elma
Download Presentation

Rock Fluid Properties PGE 363 By Dr. Eissa Mohamed Shokir

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    10. SEDIMENTARY ROCK TYPES This slide shows the relative abundance of the major sedimentary rock types. These rocks comprise approximately 99% of all sedimentary rocks, including hydrocarbon source rocks and traps. Sedimentary rock can be divided into two major classes. CLASTICS - Sandstone, conglomerate, siltstone, and shale - Comprised mainly of silicate minerals - Classified on the basis of grain size and mineral composition CARBONATES - limestone and dolomite - consist mainly of the carbonate minerals calcite (limestone) or dolomite (dolostone) This slide shows the relative abundance of the major sedimentary rock types. These rocks comprise approximately 99% of all sedimentary rocks, including hydrocarbon source rocks and traps. Sedimentary rock can be divided into two major classes. CLASTICS - Sandstone, conglomerate, siltstone, and shale - Comprised mainly of silicate minerals - Classified on the basis of grain size and mineral composition CARBONATES - limestone and dolomite - consist mainly of the carbonate minerals calcite (limestone) or dolomite (dolostone)

    13. GENERATION, MIGRATION, AND TRAPPING OF HYDROCARBONS Several conditions must be satisfied for an economic hydrocarbon accumulation to exist. First, there must be sedimentary rocks that have good source rock characteristics and have reached thermal maturity. Second, the hydrocarbons must have migrated from the source rock to a potential reservoir, which must have adequate porosity and permeability. Finally, there must be a trap to arrest the hydrocarbon migration and hold sufficient quantities to make the prospect economic. Hydrocarbon traps usually consist of an impervious layer (seal), such as shale, above the reservoir and barrier such as a fault or facies pinch that terminates the reservoir.Several conditions must be satisfied for an economic hydrocarbon accumulation to exist. First, there must be sedimentary rocks that have good source rock characteristics and have reached thermal maturity. Second, the hydrocarbons must have migrated from the source rock to a potential reservoir, which must have adequate porosity and permeability. Finally, there must be a trap to arrest the hydrocarbon migration and hold sufficient quantities to make the prospect economic. Hydrocarbon traps usually consist of an impervious layer (seal), such as shale, above the reservoir and barrier such as a fault or facies pinch that terminates the reservoir.

    14. Since petroleum reservoirs are generally located many thousands of feet below the surface, it is necessary to use sophisticated tools, such as wireline logs, to gather important information about the reservoirs. This information is then interpreted by highly trained industry professionals, using various mathematical and empirical models, to determine fundamental reservoir properties, such as porosity and permeability. Since petroleum reservoirs are generally located many thousands of feet below the surface, it is necessary to use sophisticated tools, such as wireline logs, to gather important information about the reservoirs. This information is then interpreted by highly trained industry professionals, using various mathematical and empirical models, to determine fundamental reservoir properties, such as porosity and permeability.

More Related