1 / 17

毕业论文报告

毕业论文报告. 孙悦明 2012.04. 论文题目. 使用本体结构辅助系统化调研. 提纲. 论文工作介绍 系统化调研简介 结构化摘要简介 工作整体介绍 SLRONT 的构建 扩展 SLRONT 为 COSONT 实例化 COSONT 支持 SLR 中的关键步骤. 系统化调研简介. 系统化调研 SLR Protocol 定义研究问题 各个步骤的执行准则. Identification of Research. Study Selection. Study Quality Assessment. Data Extraction. Data

eliza
Download Presentation

毕业论文报告

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 毕业论文报告 孙悦明 2012.04

  2. 论文题目 使用本体结构辅助系统化调研

  3. 提纲 • 论文工作介绍 • 系统化调研简介 • 结构化摘要简介 • 工作整体介绍 • SLRONT的构建 • 扩展SLRONT为COSONT • 实例化COSONT • 支持SLR中的关键步骤

  4. 系统化调研简介 • 系统化调研 • SLR Protocol • 定义研究问题 • 各个步骤的执行准则 Identification of Research Study Selection Study Quality Assessment Data Extraction Data Synthesis

  5. 结构化摘要简介 • 结构化摘要 • 完备性与清晰性 Background Object Method Result Conclusion

  6. 工作整体介绍 • 工作流程图

  7. SLRONT的构建 • Review Protocol部分

  8. SLRONT的构建 • Primary Study部分

  9. 扩展为COSONT • 主要扩展Structured abstract部分

  10. COSONT • 估算方法部分的扩展

  11. 实例化COSONT—非结构化摘要 • Background • Method • Conclusion part

  12. 实例化COSONT—基于规则的分析 In this paper, we propose an approach that converts cost estimation into a classification problem and that classifies new software projects in one of the effort classes, each of which corresponds to an effort interval. • MAINSEN • R1: S = PP, NP VP • R2: S = NP VP • CONCLU • R3: S = (PP,)+ NP VP • 定位结果 Resultsof the study show a significant correlation between the software development effort and all three models.

  13. 实例化COSONT—抽取本体信息 • 抽取的名词词组对比 • 抽取结论 The results show that KNN is an effective method. - amod(method-9, effective-8) - nsubj(method-9, KNN-5) - cop(method-9, is-6) - det(method-9, an-7) This paper describes a controlled experiment of student programmers performing maintenance tasks on a C++ program.

  14. 实例化COSONT

  15. 支持SLR中的关键步骤 • 辅助系统化调研第二步 • 寻找带有regression and neural network的文章 • 专家判断: • 自动化方法

  16. Q&A

  17. 感谢各位老师和同学! 2012.04

More Related