sciences physiques et math matiques appliqu s au mouvement biom canique deug 1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Sciences physiques et mathématiques appliqués au mouvement Biomécanique (DEUG 1) PowerPoint Presentation
Download Presentation
Sciences physiques et mathématiques appliqués au mouvement Biomécanique (DEUG 1)

Loading in 2 Seconds...

play fullscreen
1 / 71

Sciences physiques et mathématiques appliqués au mouvement Biomécanique (DEUG 1) - PowerPoint PPT Presentation


  • 214 Views
  • Uploaded on

Sciences physiques et mathématiques appliqués au mouvement Biomécanique (DEUG 1). Philippe CONNES (MCU) Université des Antilles et de la Guyane. Références. Giancoli. Physique générale : Mécanique et Thermodynamique. Ed. DeBoeck Université.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Sciences physiques et mathématiques appliqués au mouvement Biomécanique (DEUG 1)' - elina


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
sciences physiques et math matiques appliqu s au mouvement biom canique deug 1

Sciences physiques et mathématiques appliqués au mouvementBiomécanique (DEUG 1)

Philippe CONNES (MCU)

Université des Antilles et de la Guyane

slide2

Références

  • Giancoli. Physique générale : Mécanique et Thermodynamique. Ed. DeBoeck Université.
  • G. Millet & S. Perrey (2004). Physiologie de l’exercice musculaire. Ed. ellipses.
  • P.O. Astrand, K. Rodahl, H.A. Dahl & S.B. Stromme (2003). Textbook of Work Physiology. Fourth Edition. Ed. Human Kinetics.
  • Site internet : UFR STAPS Montpellier – support de cours (Stéphane Perrey)
slide3

Rappel

  • Mécanique :
  • Etude du mouvement des objets et des concepts de force et d’énergie qui s’y rattachent (science du mouvement)
  • La mécanique est composée par :

Dynamique : causes du mouvement ?

Statique : s’intéresse aux situations où il y absence de mouvement

Cinématique : s’intéresse à la description des mouvements

BIOMECANIQUE

Application des lois physiques à l’être humain

slide4

Rappel

  • Les unités de mesure :
  • En physique, il est important d’utiliser un ensemble cohérent d’unités : système international (SI)

Quantité Unité Abréviation

Longueur Mètre m

Temps Seconde s

Masse Kilogramme kg

Courant électrique Ampère A

Température Kelvin K

Quantité de substance Mole mol

Intensité lumineuse Candela cd

slide5

Plan du cours

  • Cinématique

1.1. Cinématique en une dimension

1.1.1. Vitesse et accélération

1.1.2. Le mouvement uniformément accéléré

1.1.3. La chute des objets

1.2. Cinématique en deux ou trois dimensions

1.2.1. Calculs vectoriels

1.2.2. Le mouvement circulaire uniforme

slide6

Plan du cours

2. La Dynamique et les lois de Newton

slide7

Plan du cours

3. Méthodes indirectes de détermination du métabolisme énergétique à l’effort : approche mécanique

3.1. Rappels sur le muscle et la contraction musculaire

3.2. Transferts d’énergie chimique à énergie mécanique

3.2.1. Rappels sur les filières énergétiques

3.2.2. Exercices et métabolisme anaérobie

3.3. Tests utilisés pour évaluer le métabolisme anaérobie (approche mécanique)

3.2.1. Notions de travail et de puissance

3.2.2. Tests de détente verticale (Puissance mécanique externe maximale)

3.2.3. Le force-vitesse (estimation de la puissance anaérobie)

3.2.4. Le Wingate (estimation de la puissance et capacité anaérobie)

3.2.5. Exemples appliqués à la recherche

slide8

1. Cinématique

1.1. Cinématique en une dimension

slide9

v

v

Cinématique en une dimension : 1.1.1. Vitesse et accélération

  • Vitesse Moyenne :

t2

t1

Départ

Arrivée

x2

x1

= (X2 – X1) / (t2 – t1)

= X / t (m/s ou m.s-1)

 = delta = variation

slide10

Vitesse Instantanée : v

t2

t1

Départ

Arrivée

x2

x1

X’

C’est la limite de la vitesse moyenne lorsque t tend vers 0.

slide11

v

  • Exercice

Une boule de billard se déplace le long de l’axe des x. Au temps t1 = 1 s, elle se trouve à x1 = 0,15 m; au temps t2 = 2,2 s, elle est à x2 = 0,95 m. Quelle est son vecteur vitesse moyenne?

  • Solution

x = x2 – x1 = 0,95 – 0,15 = 0,80 m.

t = t2 – t1 = 2,2 – 1 = 1,2 s.

= x / t = 0,8 / 1,2

= 0,67 m/s

slide12

a

a

a

  • Accélération Moyenne :

On dit d’un objet dont la vitesse varie dans le temps qu’il accélère. Lorsqu’une voiture passe de 0 à 90 km/h, elle accélère. Si une autre voiture atteint les 90 km/h en moins de temps que la première, on dit que son accélération est plus grande.

L’accélération moyenne dans un intervalle de temps t = t2 – t1 au cours duquel la vitesse varie de v = v2 – v1, se définit comme

= (v2 – v1) / (t2 – t1)

= v / t (m/s2 ou m.s-2)

slide13

Accélération instantanée : a

C’est la limite de l’accélération moyenne lorsque t tend vers 0.

slide14

a

  • Exercice

Un vélo accélère sur une route droite, passant de 0 à 40 km/h en 8 s. Quelle est la grandeur de son accélération moyenne

  • Solution

v = v2 – v1 = 40 – 0 = 40 km/h.

t = t2 – t1 = 8 – 0 = 8 s.

= v / t = 40 / 8

= 5 m/s2

slide15

Cinématique en une dimension: 1.1.2. Le mouvement uniformément accéléré

Dans le cas d’un mouvement uniformément accéléré, la grandeur de la vitesse est constante (ou considérée comme constante) et le mouvement, rectiligne.

Pour simplifier la notation, on suppose que tout temps de départ est nul, soit t1 = 0 et t2 = t (le temps écoulé).

La position initiale (x1) et la vitesse initiale (v1) seront notés x0 et v0, et à un moment t, elles seront désignées par x et v (plutôt que x2 et v2)

slide16

a

v

v

v

v – v0

x – x0

a

=

=

=

t

t

x = x0 + t

v = v0 + at

v + v0

=

2

v + v0

x = x0 + ( ) t

2

v0 + at + v0

x = x0 + ( ) t

2

x = x0 + v0t + 1/2at2

slide17

a

v

v

v + v0

v – v0

x – x0

a

=

=

=

=

t

t

2

x = x0 + t

v = v0 + at

v - v0

v + v0

t =

x = x0 + ( )t

a

2

v + v0

v - v0

x = x0 + ( ) ( )

2

a

v2 - v02

x = x0 + ( )

v2 = v02 + 2a(x - x0)

2a

slide18

Equations

a = constante

slide19

Exercice

Combien de temps une voiture met-elle à parcourir 60 m si sa vitesse initiale est nulle et son accélération est de 2,5 m/s2?

  • Solution

1) Tableau des éléments connus et inconnus

2) Résolution

t

x0 = 0

x = 60 m

a = 2,5 m/s2

v0 = 0

2x

2(60m)

t2 =

=

= 48 s2

a

2,5 m/s2

t = (48) = 6,93 s

slide20

Cinématique en une dimension: 1.1.3. La chute des objets

Un des exemples les plus courants du mouvement uniformément accéléré est la chute verticale d’un objet.

Contribution de Galilée:

« à un lieu donné sur Terre et en l’absence de résistance de l’air, tous les objets avec la même accélération uniforme »

Cette accélération porte le nom d’accélération gravitationnelle

g = 9,80 m/s2

Pour résoudre des problèmes sur les objets en chute libre, on peut utiliser les équations précédentes en remplaçant a par g, et x par y.

slide21

Exercice

Une balle tombe du haut d’une tour de 100 m. Quelle distance aura-t-elle parcourue après 1, 2 et 3 s.

  • Solution

y = y0 + v0t + 1/2gt2

y0 = 0

g

100 m

y = 1/2(9,80 m/s2)(12)

Y = ?

y = 1/2(9,80 m/s2)(22)

y = 1/2(9,80 m/s2)(32)

slide22

1.2. Cinématique en deux-trois dimensions

  • Espace à plusieurs dimensions
  • Toute grandeur doit être définit par son intensité et sa direction
  • Représentation vectorielle
slide23

Cinématique en 2 – 3 dimensions: 1.2.1. Calculs vectoriels

En physique, il existe deux types de grandeurs :

  • Les grandeurs scalaires : valeurs numériques suivi d’une unité (temps, distance, température…)
  • Les grandeurs vectorielles qui sont définies par :
    • une intensité
    • une direction
    • un sens
slide24

Représentation d’un vecteur

v

C’est une flèche,

avec un point d’application,

une droite d’action ou de support,

une direction, un sens

et une intensité (grandeur proportionnelle à son module)

slide25

Comment représenter un vecteur ?

En fonction d’un système de référence (système de coordonnées) : le système cartésien

Par sa grandeur V et son angle ⍬ formé avec l’axe des x.

Par ses composantes Vx et Vy.

slide26

C

Rappel trigonométrique

A

B

slide28

v1

v2

v1

vR

v1

v2

v1

vR

v2

v2

En fait, pour avoir VR, on ajoute V1 (Vx1)

aux composantes vectorielles de V2 (Vx2 et Vy2)

Opération graphique avec des vecteurs

+

=

-

=

slide29

Cinématique en 2 – 3 dimensions: 1.2.2. Le mouvement circulaire uniforme

On dit d’un objet qui se déplace en décrivant un cercle à une vitesse constante v qu’il exécute un mouvement circulaire uniforme

slide30

Même si la grandeur de la vitesse demeure constante, sa direction varie continuellement.

  • L’accélération étant définie comme le rythme de variation de la vitesse, une variation de la direction de la vitesse correspond à une accélération au même titre qu’une variation de sa grandeur.
  • Ainsi, un objet qui effectue un mouvement circulaire uniforme accélère. Cette accélération est dirigée vers le centre du cercle.

On parle d’accélération radiale ou centripète.

ar = v2 /r

slide31

Exercice

L’orbite quasi circulaire de la Lune autour de la Terre a un rayon (r) d’environ 385 000 km et une période de 27.3 jours.

Déterminer l’accélération de la Lune par rapport à la Terre

v = x / t

= (2p  r) / t

= (2p  385 000  1000) / (27.3  24  60  60)

= 1.02  103 m/s

L

T

ar = v2 / r

= (1.02  103)2 / (385 000  1000)

= 2.73  10-3 m/s

slide33

F

m  a

a =

F =

m

La dynamique et les lois de Newton

  • La dynamique s’intéresse de rechercher les causes d’un mouvement
  • 1ère loi de Newton :
  • Tout corps reste immobile ou conserve un mouvement rectiligne uniforme aussi longtemps qu’aucune force extérieure ne vient modifier son état (loi d’inertie)
  • 2ème loi de Newton :
  • L’accélération d’un objet est directement proportionnelle à la force nette exercée sur lui et inversement proportionnelle à la masse de cet objet.
  • La direction de l’accélération correspond au sens dans lequel la force nette s’exerce.
slide34

3ème loi de Newton :

  • Chaque fois qu’un objet exerce une force sur un second objet, celui-ci exerce en retour une force égale mais opposée.
  • A chaque action correspond une réaction égale mais opposée
slide35

3. Méthodes indirectes de détermination du métabolisme énergétique anaérobie à l’effort : approche mécanique

    • 3.1. Rappels sur le muscle et la contraction musculaire
slide36

Transferts d’énergie chimique à énergie mécanique:

3.1.1. Rappels le muscle et la contraction musculaire

slide38

La contraction musculaire = raccourcissement des sarcomères par glissement des filaments (fins) d’actines sur les filaments (épais) de myosines. Mais comment les sarcomères se raccourcissent-ils ?

Et l’ATP (adénosine triphosphate) dans tout ça?

slide39

L’ATP est une molécule qui reçoit l’énergie provenant de la dégradation des molécules de lipides, protéines et glucides et qui transmet cette énergie aux fonctions cellulaires.

Adenosine

Phosphate

Phosphate

Phosphate

Stockage de l’énergie = dans les liaisons covalentes entre les groupements phosphate.

La rupture d’une de ces liaisons libère une quantité importante d’énergie (7kcal/mole)

slide40

ADP

ADP

Tête de myosine: configuration haute énergie

Pi

Pi

Libération d’ADP et de Pi

2) Phase active: la tête de myosine pivote et se replie en tirant l’actine

1) La tête de myosine se lie à l’actine

ATP

ADP

Hydrolyse de

l’ATP

Pi

ATP

Tête de myosine: configuration basse énergie

4) Mise sous tension de la tête de myosine quand l’ATP est dissocié en ADP et Pi

3) Détachement de la tête de myosine pendant qu’une nouvelle molécule d’ATP s’y attache

slide42

Transferts d’énergie chimique à énergie mécanique:

3.2.1. Rappels sur les filières énergétiques

Le muscle a des réserves d’ATP qui lui permettent de fonctionner pendant quelques secondes. Ensuite, le muscle doit régénérer de l’ATP pour continuer à se contracter lors d’un exercice physique.

  • Filière anaérobie alactique ou système ATP-PC. Source immédiate d’ATP. Se déroule dans le cytosol. Réaction n’impliquant pas d’O2.

PC + ADP ATP + C

Creatine kinase (CK)

PC = phosphocreatine

Bilan énergétique :

1 mole d’ATP pour une mole de PCr

slide43

Filière anaérobie lactique (glycolyse). Se déroule dans le cytosol. Réaction n’impliquant pas d’O2

Glucides (alimentation)

Glucose sanguin

hexokinase

Glucose

Glucose-6-P

Fructose-1,6-P

Fructose-6-P

phosphofructokinase

Pyruvate kinase

ATP

Ac. Pyruvique

(Ac. Lactique)

Bilan énergétique :

2 moles d’ATP pour une mole de glucose

slide44

CIRCULATION

FIBRE MUSCULAIRE

ADP + Pi

phosphocréatine

ATPase

de la myosine

CONTRACTION

créatine

ATP

glycogène

protéines

PHOSPHORYLATION

OXYDATIVE

GLYCOLYSE

glucose

glucose

graisses

acide lactique

oxygène

  • Filière aérobie (phosphorylation oxydative). Se déroule dans la mitochondrie et implique l’O2. Utilisation de G, L et P.

Bilan énergétique :

36 moles d’ATP pour une mole de glucose

slide45

ATP – CP: Puissance très importante (pic rapide, ms), Capacité faible (< 8 -10 s)

1. Anaérobie alactique

Glycolyse « anaérobie » : Puissance élevée (Pic 6s), Capacité moyenne (90 -12à s)

2. Anaérobie lactique

Voie oxydative : Puissance faible (Pic 140 s), Capacité très importante (des heures)

3. Aérobie

Saut

400 m sur piste

Puissance/énergie

3000 m sur piste

1

2

3

Marathon

10 s

30 s

60 s

2 min

15 min +

slide48

Transferts d’énergie chimique à énergie mécanique:

3.2.2. Exercice et métabolisme anaérobie

  • Puissance :
  • Débit ou quantité d’énergie susceptible d’être fournie par unité de temps
  • Capacité :
  • Tenir un % de la puissance anaérobie maximale pendant le plus longtemps possible
slide50

La contribution des systèmes énergétiques varie en fonction de :

  • l’intensité d’exercice,
  • la durée de l’exercice,
  • les répétitions d’exercices.
slide51

Utilisation de l’ATP via le métabolisme anaérobie et Puissance mécanique externe lors d’un sprint de 30 s.

slide53

Cinétiques ATP, PCr et lactate musculaire et force musculaire lors de stimulations électriques avec occlusion circulatoire

slide54

Contribution des métabolisme anaérobie (ATP, PCr et glycolyse) et aérobie au cours de deux sprints maximaux de 30 s séparés par 4 min de récupération passive.

slide55

3.3. Tests utilisés pour évaluer le métabolisme anaérobie (approche mécanique)

  • 3.3.1. Notions de travail et de puissance
slide56

3.3. Tests utilisés pour évaluer le métabolisme anaérobie (approche mécanique)

  • 3.3.1. Notions de travail et de puissance

Puissance

Travail

Puissance = travail  temps

Travail = force x distance

Exemple : Réaliser 20 kgm de travail en 5 secondes

= 4 kgm/s

Exemple : lever un poids de 10 kg sur une distance de 2 m

= 20 kgm

  • Unités :
  • Kgm = kilogramme mètre
  • J (joules) ou kj (kiloujoules).
  • 1 kgm = 9,8 j
  • Kcal (kilocalories).
  • 1 kcal = 426,85 kgm
  • Unités :
  • Kgm/min
  • Watts (W) = 6,12 kgm/min
  • Kcal/min
  • Kj/min
slide57

Mesure du travail et de la puissance

- W = rpm (fréquence de pédallage) X resistance (kg) X 6 m (6 m = distance parcourue volant par tour de pédale)

slide59

3.3. Tests utilisés pour évaluer le métabolisme anaérobie (approche mécanique)

  • 3.3.2. Test de détente verticale (Puissance mécanique externe maximale)

Au cours d’un saut, il y a deux types de variations d’énergie : Epot et Ec

= 0car vitesse initiale = 0 et vitesse finale (maximum du saut) = 0

La puissance mécanique externe peut être évaluée à partir de la variation d’énergie potentielle du centre de masse

Epot = m  g  h

W = m  g  (hmax – hmin)

Pext = W / temps de poussée

Pext-norm = Pext / m

slide60

Différents types de sauts verticaux

  • Le Squat Jump (SJ) :
  • Saut comportant un délai entre la flexion et l’extension des membres inférieurs. Le sujet part assis sur une chaise, lève le bras (mesure de hmin), puis saute le plus haut possible (mesure de hmax)
  • Le Countermovement Jump (saut avec contre mouvement, CJ) :
  • Le sujet part puis effectue une flexion jusqu’à effleurer la chaise (pour h min) puis saute immédiatement après la flexion le plus haut possible (hmax)
  • Le Drop Jump (DJ) ou saut en contre bas :
  • Le sujet part debout sur une chaise, saute au sol puis saute immédiatement le plus haut possible (attention, difficile de mesurer hmin)
slide61

3.2.3. Le force-vitesse

(estimation de la puissance anaérobie)

slide62

Approche 1 :

On effectue 5 sprints de 6 secondes contre des charges croissantes et on mesure la vitesse de pédalage (rpm)

Poids du sujet: 80 kg. Charge: 0 - 0,25 – 0,5 – 0,75 – 1 puis 1,25 kg par poids du corps

Calcul de la puissance (F X V) et détermination de Pmax, Vopt et Fopt.

slide63

Approche 2 :

Un sprint unique de 6 s contre une charge comprise entre 50 et 80 g / poids du corps. Mesure de la vitesse de pédalage et détermination de la Pmax, Vopt et Fopt.

Fmax (N)

Vmax (rpm)

Pmax (W)

Fopt (N)

Vopt (rpm)

Utile pour le Wingate

Arsac et al., 1996; Lakomy 1986.

slide65

Calcul du test Wingate:

Poids du sujet = 80,00 kg

Force de freinage (optimale) = 100 g/kg de poids de corps

Résistance sur le volant d’inertie = 8 kg

But :

Pédaler le plus vite possible pendant 30 s contre la force de freinage

slide66

Calcul de la puissance anaérobie et de la capacité anaérobie

  • Puissance maximale anaérobie (comme pour le force vitesse) (watts)
  • Possibilité de calculer les Puissances moyennes sur les différents segments de 5 s (W / temps)
  • Capacité anaérobie sur 30 s
  • Somme totale de travail réalisé pour chaque segment de 5 s*, exprimé en Kj.
  • * W = rpm X resistance (kg) X 6 m (6 m = distance parcourue volant par tour de pédale)
slide69

Comparaison métabolisme anaérobie alactique athlètes porteurs du trait drépanocytaire (AS) versus athlètes non porteurs (AA). Hue et al. International Journal of Sport Medecine; 23: 174-177, 2002

Hauteur atteinte lors d’un CMJ : AS > AA.

Les porteurs du trait pourraient être plus performant que les non porteurs dans les disciplines sportives explosives.

slide70

Effet de la caféine sur la performance et le métabolisme au cours de Wingates répétés.Greer et al. Journal of Applied Physiology 85(4), 1502-1508, 1998

  • 9 sujets
  • 4 tests de Wingate séparés par 4 min de récupération passive.
  • 2 conditions : placebo (dextrose) et expérimentale (caféine)
  • Comparaison Pmax et Pmoy
  • Aucun effet de caféine sur WIN 1 et 2
  • Effets négatifs de caféine sur WIN 3 et 4

Caféine : pas d’effet ergogénique sur performance anaérobie