1 / 14

Materials Engineering – Day 2

Materials Engineering – Day 2. Deriving Information from Stress Strain curve of a ductile metal. We will do an exercise. Review ductility and brittleness. Contrast in terms of fracture appearance. Remove a common source of confusion. Stiffness is one thing and strength is another.

elata
Download Presentation

Materials Engineering – Day 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Materials Engineering – Day 2 • Deriving Information from Stress Strain curve of a ductile metal. We will do an exercise. • Review ductility and brittleness. Contrast in terms of fracture appearance. • Remove a common source of confusion. Stiffness is one thing and strength is another. • The Concept of Hardness. Discussion of Hardness testing. • A sad fact. Performance on the tension test is one thing. But sometimes surprising things happen in the service environment.

  2. Exercise • The exercise is a sample quiz question. Please plan to participate. • We will be comparing answers as we go.

  3. Ductile vs. Brittle Behavior • Let us look at some pictures of failure in metal. Here they are. • Notes on Brittle • Gross deformation is not great • Failure is by cleavage mechanism • Fracture surface is faceted and shiny • Notes on Ductile • Gross deformation is visible • Failure is by microvoid coalescence • Fracture surface is dimpled and dull

  4. Test: What type of fracture is this?

  5. Difference between Stiffness and Strength • Material A has E = 10x106 psi and UTS = 50 ksi • Material B has E = 30x106 psi and UTS = 35 ksi WHICH IS STRONGER? WHICH IS STIFFER?

  6. Summary • Stress and strain: These are size-independent measures of load and displacement, respectively. • Elastic behavior: This reversible behavior often shows a linear relation between stress and strain. To minimize deformation, select a material with a large elastic modulus (E or G). • Plastic behavior: This permanent deformation behavior occurs when the tensile (or compressive) uniaxial stress reaches sy. • Toughness: The energy needed to break a unit volume of material. • Ductility: The plastic strain at failure.

  7. Hardness and Hardness Testing • What’s the problem with the tension test? • Expensive & complex • Destructive • Has to be done in the lab • Takes a while • This leads to a more simple characterization of material behavior, through the test for hardness. Hardness is resistance to indentation by a hard object like a needle or ball.

  8. apply known force measure size e.g., of indent after 10 mm sphere removing load Smaller indents d D mean larger hardness. most brasses easy to machine cutting nitrided plastics Al alloys steels file hard tools steels diamond increasing hardness Hardness • Resistance to permanently indenting the surface. • Large hardness means: --resistance to plastic deformation or cracking in compression. --better wear properties.

  9. Hardness Testing Methods • Rockwell. 1) Apply preload. 2) Add main load and measure depth. 3) Remove main load and measure depth. Difference in depths is read out as a hardness.

  10. Machine forTesting Hardness (specimen placed On circular stage)

  11. Hardness: Resistance to Penetration/ Indentation/ Scratching

  12. Kinds of Hardness Tests • Rockwell A, B, and C. B is soft metals, C is for hard metals. Eg. Steel knife blade RC about 60. Crankshaft RC about 45. Values below 20 and above 100 RC are not reliable. Also superficial. • Brinell Hardness. Oldest measure. A steel (HBS) or tungsten (HBW) balls are used as indenters. You measure the diameter of the indentation and use a formula to get HB. UTS (psi) = 500 x BHN • Vickers. A diamond indenter is used. A very wide ranging scale. • Here is a comparison or more

  13. Hardness: Measurement Table 6.5

  14. Hardness vs. Strength Correlate depending on metal UTS Cast Iron Steel: UTS = 500 BHN BHN

More Related