900 likes | 1.12k Views
1.4 – Solving Absolute Value Equations. 1.4 – Solving Absolute Value Equations. Absolute Value. 1.4 – Solving Absolute Value Equations. Absolute Value–unit value only. 1.4 – Solving Absolute Value Equations. Absolute Value–unit value only. 1.4 – Solving Absolute Value Equations.
E N D
1.4 – Solving Absolute Value Equations Absolute Value
1.4 – Solving Absolute Value Equations Absolute Value–unit value only
1.4 – Solving Absolute Value Equations Absolute Value–unit value only
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs)
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5|
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| =
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 +
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3)
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7|
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 +
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7|
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 +
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22|
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 +
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 + 22
1.4 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 + 22 = 23.4
Example 2 Solve |x – 18| = 5. |x – 18| = 5
Example 2 Solve |x – 18| = 5. |x – 18| = 5
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 x = 23
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0.
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9 Note:
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5 x – 18 = -5 +18 +18 +18 +18 x = 23 x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!