1 / 22

4 th AOR W/S on GNSS Kuala Lumpur, Malaysia Dec. 8-10, 2012

4 th AOR W/S on GNSS Kuala Lumpur, Malaysia Dec. 8-10, 2012. Multi-GNSS Augmentation by L1-SAIF Signal: Preliminary Results. Takeyasu Sakai Electronic Navigation Research Institute. Introduction. QZSS (Quasi-Zenith Satellite System) program :

egriffith
Download Presentation

4 th AOR W/S on GNSS Kuala Lumpur, Malaysia Dec. 8-10, 2012

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 4th AOR W/S on GNSS Kuala Lumpur, Malaysia Dec. 8-10, 2012 Multi-GNSS Augmentation by L1-SAIF Signal: Preliminary Results Takeyasu Sakai Electronic Navigation Research Institute

  2. Introduction • QZSS (Quasi-Zenith Satellite System) program: • Regional navigation service broadcast from high-elevation angle by a combination of three satellites on the inclined geosynchronous (quasi-zenith) orbit; • Broadcast GPS-like supplemental signals on three frequencies and two augmentation signals, L1-SAIF and LEX. • L1-SAIF (Submeter-class Augmentation with Integrity Function) signal offers: • Submeter accuracy wide-area differential correction service; • Integrity function for safety of mobile users; and • Ranging function for improving position availability; all on L1 single frequency. • ENRI has been developing L1-SAIF signal and experimental facility: • Signal design: SBAS-like message stream on L1 C/A code (PRN 183); • Possibility of Multi-GNSS augmentation: combined use of GPS and other constellations would improve the availability of position solutions. • Especially where visibility is limited. • Upgraded L1-SAIF experimental facility and conducted a Multi-GNSS trial.

  3. GPS/GEO QZS QZSS Concept • Broadcast signal from high elevation angle; • Applicable to navigation services for mountain area and urban canyon; • Augmentation signal from the zenith could help users to acquire other GPS satellites at any time. • Footprint of QZSS orbit; • Centered at 135E; • Eccentricity 0.075, Inclination 43deg.

  4. QZSS L1-SAIF Signal • QZSS broadcasts wide-area augmentation signal: • Called L1-SAIF (Submeter-class Augmentation with Integrity Function); • Augmentation signal for mobile users designed and developed by ENRI. • L1-SAIF signal offers: • Wide-area differential correction service for improving position accuracy; Target accuracy: 1 meter for horizontal; • Integrity function for safety of mobile users; and • Ranging function for improving position availability. • Augmentation to GPS L1C/A based on the SBAS specifications: • Broadcast on L1 freq. with RHCP; Common antenna and RF front-end; • Modulated by BPSK with C/A code (PRN 183); • 250 bps data rate with 1/2 FEC; Message structure is identical with SBAS; • Differences from SBAS: PRN, large Doppler, and some additional messages. • Developed easily if one has the experience to develop SBAS-capable receiver; • Specification of L1-SAIF: See IS-QZSS document (Available at JAXA HP).

  5. Ranging Function QZS satellites GPS Constellation Error Correction Ranging Signal Integrity Function L1-SAIF Signal Functions 3 Functions by L1-SAIF • Three functions by a single signal: ranging, error correction (Target accuracy: 1m), and integrity; • User receivers can receive both GPS and L1-SAIF signals with a single antenna and RF front-end; • Message-oriented information transmission: Flexible contents. User GPS/L1-SAIF Receivers SAIF: Submeter-class Augmentation with Integrity Function

  6. GPS Satellites QZS Ranging Signal L1-SAIF Signal K-band Uplink Ranging Signal Measure- ments L1-SAIF Message GEONET L1SMS QZSS MCS GSI Server (Tokyo) ENRI (Tokyo) JAXA TKSC (Tsukuba) ENRI L1-SAIF Master Station • L1-SAIF Master Station (L1SMS): • Generates L1-SAIF message stream in realtime and transmits it to QZSS MCS developed by and installed at JAXA; • Installed at ENRI, Tokyo; 90km from JAXA Tsukuba Space Center; • Dual frequency GPS measurements at some locations in Japan necessary to generate L1-SAIF messages are sent from GEONET in realtime.

  7. System Horizontal Error Vertical Error Standalone GPS L1-SAIF Augmentation Standalone GPS RMS 1.45 m 2.92 m Max 6.02 m 8.45 m w/ L1-SAIF RMS 0.29 m 0.39 m Max 1.56 m 2.57 m L1-SAIF Correction: GPS only GPS Only Result 6 reference stations User location for this test L1-SAIF expe- rimental area • Example of user position error at Site 940058 (Takayama); • Realtime operation with MSAS-like 6 reference stations in Japan; • Period: 19-23 Jan. 2008 (5 days). Note: Results shown here were obtained with geodetic-grade antenna and receivers at open sky condition.

  8. QZS Augmentation Additional Constellation = GLONASS GPS constellation Users Adding GLONASS: Motivation • Increase of augmented satellites improves availability of position solution; • Also possibly reduce protection levels; Improve availability of navigation; • Chance of robust position information at mountainous areas and urban canyons.

  9. GLONASS: Differences from GPS • FDMA signals: • Change carrier frequency settings with regard to ranging sources. • Reference time and coordinates: • Time: broadcast time offset information by an L1-SAIF message; Avoids increase of unknowns in user receivers; • Coordinates: convert PZ-90.02 to WGS-84. • PRN numbers and insufficient capacity of mask pattern: • Assign PRN numbers of 38 to 61 as GLONASS slot numbers of 1 to 24; • Introduce dynamic PRN mask solution to broadcast augmentation information supporting more than 51 ranging sources, reflecting the actual visibility. • Missing IOD (Issue of Data): • IOD is used to identify ephemeris information in order to match ephemerides between L1-SAIF Master Station and users; Currently using IODE for GPS; • Identify ephemeris information based on the time of broadcast. • Satellite position computation: based on PVA as described in GLONASS ICD.

  10. User-side observations Network GPS Observables (RINEX) User-Domain Receiver Software Position Error L1-SAIF Master Station (L1SMS) Software Reference station observations Position Output SBAS Message Stream Upgrade for GLONASS Software Implementation • ENRI’s L1-SAIF Master Station (L1SMS) Software: • Generates L1-SAIF message stream: one message per second; • Run modes: • Offline operation mode: for preliminary investigation using RINEX files; • Realtime operation mode: verification of actual performance with realtime raw data. • Needs user-domain receiver software to evaluate performance. • Upgrade of L1SMS for supporting GLONASS and QZSS: • Input module: RINEX observation and navigation files containing GLONASS; • Implemented GLONASS extension as explained before, for offline mode of L1SMS; • User-domain receiver software is also upgraded to be GLONASS-capable; • QZSS is also supported as it is taken into account like GPS.

  11. Experiment: Monitor Stations • Recently Japanese GEONET began to provide GLONASS and QZSS observables in addition to GPS; • Currently more than 150 stations are GLONASS/QZSS-capable; • Data format: RINEX 2.12 observation and navigation files. • For our experiment: • 8 sites for reference stations; Reference Station (1) to (8) • 3 sites for evaluation. User Station (a) to (c) • Period: 12/7/18 – 12/7/20 (3 days).

  12. PRN Mask Transition QZSS • Showing satellite PRN identifier being augmented at each epoch; • Reflecting our implementation, PRN mask is updated periodically at every 30 minutes; • Semi-dynamic PRN mask: GPS and QZSS satellites are always ON in the masks; • PRN masks for GLONASS satellites are set ON if the satellite are visible and augmented. • IODP (issue of Data, PRN Mask) indicates change of PRN mask. GLONASS GPS

  13. Elevation Angle GPS GLONASS QZSS PRN Mask Transition 5 deg @ Tokyo • Rising satellites appear at 5-12 deg above the horizon; Latency due to periodical update of PRN mask; • However, GPS satellites also have similar latency; Not a major problem because low elevation satellites contribute a little to improve position accuracy.

  14. # of Satellites vs. Mask Angle 17 SVs 9.8 SVs 7.4 SVs @ User (b) • Introducing GLONASS satellites increases the number of satellites in roughly 75%; • QZSS increases a satellite almost all day by only a satellite on the orbit, QZS-1 "Michibiki" • Multi-constellation with QZSS offers 17 satellites at 5 deg and 9.8 satellites even at 30 deg.

  15. DOP vs. Mask Angle HDOP = 2.3 @ User (b) • GLONASS-only users suffer poor geometries; • Multi-constellation with QZSS offers HDOP of 2.3 even for 40 deg mask.

  16. User Position Error: Mask 5deg • GPS+GLO+QZS: 0.310m RMS of horizontal error at user location (b); • Looks some improvement by using multi-constellation.

  17. User Position Error: Mask 30deg • GPS+GLO+QZS: 0.372m RMS of horizontal error at user location (b); • Multi-constellation offers a good availability even for 30 deg mask.

  18. RMS Error vs. Mask: User (a) 0.528m @ User (a) • Northernmost user location; • Multi-constellation provides robust position information through mask angle of 5 to 40 deg.

  19. RMS Error vs. Mask: User (b) 0.602m @ User (b) • User location near the centroid of reference station network; • For vertical direction, 10 deg mask shows the best accuracy except GLONASS only case.

  20. RMS Error vs. Mask: User (c) 0.588m @ User (c) • Southernmost user location; • There is little dependency upon user location; possibly because ionosphere condition is quiet for the period of this experiment.

  21. Availability vs. Mask Angle 100% Availability @ User (b) • The number of epochs with valid position solution decreases with regard to increase of mask angle; • Multi-constellation with QZSS achieves 100% availability even for 40 deg mask.

  22. Conclusion • Combined use of GPS and GLONASS with L1-SAIF: • Potential problems and solutions on realizing a Multi-GNSS L1-SAIF, capable of augmenting GPS, GLONASS, and QZSS simultaneously were investigated; • L1-SAIF Master Station is upgraded for supporting Multi-GNSS augmentation and tested successfully; Currently only for offline mode using RINEX files; • It is confirmed that the performance of L1-SAIF augmentation is certainly improved by adding GLONASS and QZSS, especially when satellite visibility is limited. • Ongoing and future works: • Support of realtime operation mode; • Broadcast of augmentation information for both GPS and GLONASS on QZS-1 real signal; Plan fromthe second half of this month; • Use of GLONASS/QZSS observables in generation of ionospheric correction; • Further extension to support Galileo. • For further information, contact to sakai@enri.go.jp

More Related