1 / 32

Standard Model Physics at the LHC

Discover the fundamental aspects of Standard Model physics at the Large Hadron Collider (LHC) through an in-depth exploration of Parton Distribution Functions, Electroweak Physics, and Cross Sections of SM Processes. Gain insights into jet physics and the sensitivity of W/Z production to PDF variations. Learn about the significance of measuring boson properties and gauge couplings, with implications for precision tests of the SM. Uncover the latest findings in di-boson and lepton-pair production, and delve into the intriguing world of WWγ couplings. Dive into the realm of high-energy physics and unravel the mysteries of the universe.

edanko
Download Presentation

Standard Model Physics at the LHC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Standard Model Physics at the LHC Joachim Mnich RWTH Aachen J. Mnich: SM Physics at the LHC

  2. Standard Model Physics at the LHC • Outline: • Perspectives on • Parton distribution functions • QCD + jet physics • Electroweak physics (Z/W bosons) • Top physics • Will not cover other SM physics topics, e.g. • Higgs • B-physics • Tau physics • Diffraction, luminosity, ... J. Mnich: SM Physics at the LHC

  3. Standard Model Physics at the LHC CMS ATLAS Atlas protons protons J. Mnich: SM Physics at the LHC

  4. Cross Section of Various SM Processes • Low luminosity phase • 1033/cm2/s = 1/nb/s • approximately • 200 W-bosons • 50 Z-bosons • 1 tt-pair • will be produced per second! • The LHC uniquely combines the • two most important virtues of • HEP experiments: • High energy 14 TeV • and high luminosity • 1033 – 1034/cm2/s J. Mnich: SM Physics at the LHC

  5. Parton Distribution Functions (PDF) y = pseudorapidity DGLAP evolution qq  W  l • LHC is a proton-proton collider • But fundamental processes are • the scattering of • Quark – Antiquark • Quark – Gluon • Gluon – Gluon Examples: gg  H • need precise pdf(x,Q2) + QCD corrections (scale) J. Mnich: SM Physics at the LHC

  6. PDF from W/Z production • pT and rapidity distributions are very sensitive to pdf • particularly sensitive variable: • ratio of W+/Wcross section measures u(x)/d(x) Example: study for 0.1 fb-1, i.e. 2·106 W produced Sensitive to small differences in sea quark distribution J. Mnich: SM Physics at the LHC

  7. PDF of s, c and b quarks Generator level study: Isolated high pT + jet with incl.  Isolated high pTe/  + jet with incl.  Estimate 5-10% accuracy on pdf Limited by fragmentation functions Analyses only suited for low luminosity phase J. Mnich: SM Physics at the LHC

  8. Parton Distribution Functions (PDF) Advertisement for the ongoing HERA/LHC workshop: Recipe for measurements of PDFs from SM processes: J. Mnich: SM Physics at the LHC

  9. Jet Physics Atlas • Measure jet ET spectrum, rate varies over 11 orders of magnitude • Test QCD at the multi-TeV scale Inclusive jet rates for 300 fb-1: J. Mnich: SM Physics at the LHC

  10. QCD Atlas • Measurement of s at LHC limited by • PDF (3%) • Renormalisation & factorisation scale (7%) • Parametrisaton (A,B) • 10% accuracy s(mZ) from incl. jets • Improvement from 3-jet to 2-jet rate? • Verification of running of s and • test of QCD at the smallest distance scale • s = 0.118 at mZ • s  0.082 at 4 TeV (QCD expectation) J. Mnich: SM Physics at the LHC

  11. Electroweak Physics: Properties of W and Z bosons Atlas Measurement of the W mass at the LHC mW is important parameter in precision tests of the SM 2004: mW = 80 425  34 MeV LEP & Tevatron Run I 2007: mW  80 ...  20 MeV (2.5 ·10-4) incl. Tevatron Run II Improvement at the LHC requires control of systematic error to 10-4 level • Take advantage from • large statistics • Z  e+e, + • Combine channels & • experiments •  mW  15 MeV J. Mnich: SM Physics at the LHC

  12. Drell-Yan Lepton-Pair Production q e, /Z pT > 6 GeV || < 2.5 e+, + q Inversion of e+e qq at LEP LHC 1 fb-1 Z pole • Total cross section • pdf • parton lumi • search for Z, extra dim. , ... • Much higher mass reach as • compared to Tevatron J. Mnich: SM Physics at the LHC

  13. Drell-Yan Lepton-Pair Production • Forward-backward asymmetry • estimate quark direction • assuming xq > xq • Measurement of sin2W effective • 2004: LEP & SLD • sin2W = 0.23150  0.00016 • AFB around Z-pole • large cross section at the LHC • (Z  e+e)  1.5 nb • stat. error in 100 fb-1 • incl. forward electron tagging • (per channel & expt.) • sin2W  0.00014 • Systematics (probably larger) • PDF • Lepton acceptance • Radiative corrections Atlas [%] J. Mnich: SM Physics at the LHC

  14. Di-Boson Production h1 dim6,  s3/2 CP h2 dim8,  s5/2 CP h3 dim6,  s3/2 CP h4 dim8,  s5/2 CP f4 dim6,  s3/2 CP f5 dim6,  s3/2 CP Measuring Triple Gauge Couplings (TGC) & testing the gauge boson self couplings of the SM • WW and WWZ vertices do exist in the SM Requiring C,P and elm. gauge invariance  5 coupling parameters • ZZ and ZZZ vertices do NOT exist in the SM • Requiring Lorentz & elm. • gauge invariance • & Bose symmetry • 12 coupling parameters hiV, fiV (V= ,Z) Deviations from SM amplified by high energies! J. Mnich: SM Physics at the LHC

  15. WW Couplings Atlas Test CP conserving anomalous couplings at the WW vertex  and  • W final states • W  e and  • pT spectrum of bosons pT () spectrum for SM couplings & current limits , at 1.5 TeV Sensitivity to anomalous couplings from high end of the pT spectrum J. Mnich: SM Physics at the LHC

  16. Sensitivity to WW Couplings LEP 2004 Atlas 30 fb-1 • At LHC limits depend on energy scale  • Large improvement wrt LEP • in particular on  due to higher • energy J. Mnich: SM Physics at the LHC

  17. ZZ Couplings Example: Couplings at the ZZ vertex hi • Z final states • Z  e+e– and +– • pT spectrum of photons and mT(ll) Spectra for SM couplings compared to current limits on anomalous couplings ( = 1.5 TeV): J. Mnich: SM Physics at the LHC

  18. Triple-Boson Production SM anomalous QGC Atlas Sensitive to quartic gauge boson couplings (QGC) 30 W signal events in 30 fb-1 J. Mnich: SM Physics at the LHC

  19. Top Physics • tt production • 87% gluon fusion 13% quark annihilation • Approx. 1 tt-pair per second at 1033/cm2/s • LHC is a top factory! Inverse ratio of production mechanism as compared to Tevatron • Top decay:  100% t  bW • Other rare SM decays: • CKM suppressed t  sW, dW: 10-3 –10-4 level • tbWZ: O(10-6) • difficult, but since mt mb+mW+mZ sensitive to mt • & non-SM decays, e.g. t  bH+ J. Mnich: SM Physics at the LHC

  20. Measurement of the Top Mass: Motivation t W+ W+ b H W,Z 1-r  (1- )(1-rW) rW  (mt2-mb2)  Top mass from Tevatron: rW  log mH J. Mnich: SM Physics at the LHC

  21. Top Mass from Semi-Leptonic Events Atlas • Easiest channel tt  bb qq l • Large branching ratio • Easy to select tt  bb qq  events from CMS & ATLAS J. Mnich: SM Physics at the LHC

  22. Top Mass from Semi-Leptonic Events j1 W j2 t b-jet Atlas Reconstruct mt from hadronic W decay Constrain two light quark jets to mW J. Mnich: SM Physics at the LHC

  23. Top Mass from Semi-Leptonic Events • 3.5 million semileptonic events in 10 fb-1 • (first year of LHC operation) • Error on mt  1 – 2 GeV • Dominated by • Jet energy scale (b-jets) • Final state radiation J. Mnich: SM Physics at the LHC

  24. Top Mass from Other Channels • Di-lepton events: • BR  5% • low background • but two neutrinos in final state • mt  1.7 GeV • Fully hadronic events: • BR  45% • difficult jet enviroment • mt  3 GeV J. Mnich: SM Physics at the LHC

  25. Top Mass from J/ channel 1000 events/y @ 1034 • Method: • Partial reconstruction of top • J/ + lepton • independent of jet energy scale • limited by b fragmentation • & needs high luminosity • Estimated ultimate precision: • mt 1 GeV J. Mnich: SM Physics at the LHC

  26. W Polarization Massive gauge bosons have three polarization states • At LEP in e+e W+W : • determine W helicity from lepton (quark) decay angle in W rest frame  • (1  cos )2 transverse • sin2 longitudinal  • Fraction of longitudinal W • in e+e  W+W • 0.218  0.031 • SM: 0.24 • Tevatron: • Longitudinal W in top decays • 0.91  0.52 CDF • 0.56  0.31 D0 • SM: 0.7 J. Mnich: SM Physics at the LHC

  27. W Polarization in Top Decays Standard Model prediction: detector simulation & acceptance • precision on fraction of long. pol. W:  0.023 (stat)  0.022 (sys) J. Mnich: SM Physics at the LHC

  28. tt Spin Correlation • Very short lifetime, • no top bound states • Spin info not diluted by hadron formation • Distinguishes between • quark annihilation • A = -0.469 • and gluon fusion • A = +0.431 Use double leptonic decays tt  bb l l A= 0.311  0.035  0.028 (using 30 fb-1) J. Mnich: SM Physics at the LHC

  29. Single Top Production • direct measurement of Vtb • observable by Tevatron in Run II • LHC t  1.5 t • Selection: • t  bW  b e () • b-jet + high pT lepton • reconstruction of top mass • Background from tt • signal to bkgd. 3.5 : 1 Production mechanisms and cross sections:  245 pb  60 pb  10 pb experimental determination of Vtb to percent level (with 30 fb-1) J. Mnich: SM Physics at the LHC

  30. Determination of Top Charge Qt = +2/3 Qt = -4/3 Atlas • Top charge: • Qt = +2/3 not yet established t  W+b • Qt = -4/3 not yet excluded t  W–b • LHC: • Determine charge from rate of radiative tt events • pT spectrum of photons for 10 fb-1: J. Mnich: SM Physics at the LHC

  31. Measurement of tt cross section • Total cross section: • At 14 TeV interesting in itself • Sensitive to top mass tt  1/mt2 • Differential cross sections: • d/dpT checks pdf • d/d checks pdf • d/dmtt sensitive to production of heavy object decaying to top-pairs Xtt 1.6 TeV resonance xBR required for a discovery 30 fb-1 σxBR [fb] 300 fb-1 Mtt mtt [GeV/c2] J. Mnich: SM Physics at the LHC

  32. Summary & Conclusions • SM physics at the LHC • Very important in initial phase • to check detector • to check generators (pdf) • to prepare discoveries • Large potential for precision measurements • large cross sections • precision limited by systematics • use as many different strategies as possible Credits: Marina Cobal, Matt Dobbs, Fabiola Gianotti, Alexander Oh, Dominique Pallin, Sergey Slabospitsky J. Mnich: SM Physics at the LHC

More Related