320 likes | 330 Views
Discover the fundamental aspects of Standard Model physics at the Large Hadron Collider (LHC) through an in-depth exploration of Parton Distribution Functions, Electroweak Physics, and Cross Sections of SM Processes. Gain insights into jet physics and the sensitivity of W/Z production to PDF variations. Learn about the significance of measuring boson properties and gauge couplings, with implications for precision tests of the SM. Uncover the latest findings in di-boson and lepton-pair production, and delve into the intriguing world of WWγ couplings. Dive into the realm of high-energy physics and unravel the mysteries of the universe.
E N D
Standard Model Physics at the LHC Joachim Mnich RWTH Aachen J. Mnich: SM Physics at the LHC
Standard Model Physics at the LHC • Outline: • Perspectives on • Parton distribution functions • QCD + jet physics • Electroweak physics (Z/W bosons) • Top physics • Will not cover other SM physics topics, e.g. • Higgs • B-physics • Tau physics • Diffraction, luminosity, ... J. Mnich: SM Physics at the LHC
Standard Model Physics at the LHC CMS ATLAS Atlas protons protons J. Mnich: SM Physics at the LHC
Cross Section of Various SM Processes • Low luminosity phase • 1033/cm2/s = 1/nb/s • approximately • 200 W-bosons • 50 Z-bosons • 1 tt-pair • will be produced per second! • The LHC uniquely combines the • two most important virtues of • HEP experiments: • High energy 14 TeV • and high luminosity • 1033 – 1034/cm2/s J. Mnich: SM Physics at the LHC
Parton Distribution Functions (PDF) y = pseudorapidity DGLAP evolution qq W l • LHC is a proton-proton collider • But fundamental processes are • the scattering of • Quark – Antiquark • Quark – Gluon • Gluon – Gluon Examples: gg H • need precise pdf(x,Q2) + QCD corrections (scale) J. Mnich: SM Physics at the LHC
PDF from W/Z production • pT and rapidity distributions are very sensitive to pdf • particularly sensitive variable: • ratio of W+/Wcross section measures u(x)/d(x) Example: study for 0.1 fb-1, i.e. 2·106 W produced Sensitive to small differences in sea quark distribution J. Mnich: SM Physics at the LHC
PDF of s, c and b quarks Generator level study: Isolated high pT + jet with incl. Isolated high pTe/ + jet with incl. Estimate 5-10% accuracy on pdf Limited by fragmentation functions Analyses only suited for low luminosity phase J. Mnich: SM Physics at the LHC
Parton Distribution Functions (PDF) Advertisement for the ongoing HERA/LHC workshop: Recipe for measurements of PDFs from SM processes: J. Mnich: SM Physics at the LHC
Jet Physics Atlas • Measure jet ET spectrum, rate varies over 11 orders of magnitude • Test QCD at the multi-TeV scale Inclusive jet rates for 300 fb-1: J. Mnich: SM Physics at the LHC
QCD Atlas • Measurement of s at LHC limited by • PDF (3%) • Renormalisation & factorisation scale (7%) • Parametrisaton (A,B) • 10% accuracy s(mZ) from incl. jets • Improvement from 3-jet to 2-jet rate? • Verification of running of s and • test of QCD at the smallest distance scale • s = 0.118 at mZ • s 0.082 at 4 TeV (QCD expectation) J. Mnich: SM Physics at the LHC
Electroweak Physics: Properties of W and Z bosons Atlas Measurement of the W mass at the LHC mW is important parameter in precision tests of the SM 2004: mW = 80 425 34 MeV LEP & Tevatron Run I 2007: mW 80 ... 20 MeV (2.5 ·10-4) incl. Tevatron Run II Improvement at the LHC requires control of systematic error to 10-4 level • Take advantage from • large statistics • Z e+e, + • Combine channels & • experiments • mW 15 MeV J. Mnich: SM Physics at the LHC
Drell-Yan Lepton-Pair Production q e, /Z pT > 6 GeV || < 2.5 e+, + q Inversion of e+e qq at LEP LHC 1 fb-1 Z pole • Total cross section • pdf • parton lumi • search for Z, extra dim. , ... • Much higher mass reach as • compared to Tevatron J. Mnich: SM Physics at the LHC
Drell-Yan Lepton-Pair Production • Forward-backward asymmetry • estimate quark direction • assuming xq > xq • Measurement of sin2W effective • 2004: LEP & SLD • sin2W = 0.23150 0.00016 • AFB around Z-pole • large cross section at the LHC • (Z e+e) 1.5 nb • stat. error in 100 fb-1 • incl. forward electron tagging • (per channel & expt.) • sin2W 0.00014 • Systematics (probably larger) • PDF • Lepton acceptance • Radiative corrections Atlas [%] J. Mnich: SM Physics at the LHC
Di-Boson Production h1 dim6, s3/2 CP h2 dim8, s5/2 CP h3 dim6, s3/2 CP h4 dim8, s5/2 CP f4 dim6, s3/2 CP f5 dim6, s3/2 CP Measuring Triple Gauge Couplings (TGC) & testing the gauge boson self couplings of the SM • WW and WWZ vertices do exist in the SM Requiring C,P and elm. gauge invariance 5 coupling parameters • ZZ and ZZZ vertices do NOT exist in the SM • Requiring Lorentz & elm. • gauge invariance • & Bose symmetry • 12 coupling parameters hiV, fiV (V= ,Z) Deviations from SM amplified by high energies! J. Mnich: SM Physics at the LHC
WW Couplings Atlas Test CP conserving anomalous couplings at the WW vertex and • W final states • W e and • pT spectrum of bosons pT () spectrum for SM couplings & current limits , at 1.5 TeV Sensitivity to anomalous couplings from high end of the pT spectrum J. Mnich: SM Physics at the LHC
Sensitivity to WW Couplings LEP 2004 Atlas 30 fb-1 • At LHC limits depend on energy scale • Large improvement wrt LEP • in particular on due to higher • energy J. Mnich: SM Physics at the LHC
ZZ Couplings Example: Couplings at the ZZ vertex hi • Z final states • Z e+e– and +– • pT spectrum of photons and mT(ll) Spectra for SM couplings compared to current limits on anomalous couplings ( = 1.5 TeV): J. Mnich: SM Physics at the LHC
Triple-Boson Production SM anomalous QGC Atlas Sensitive to quartic gauge boson couplings (QGC) 30 W signal events in 30 fb-1 J. Mnich: SM Physics at the LHC
Top Physics • tt production • 87% gluon fusion 13% quark annihilation • Approx. 1 tt-pair per second at 1033/cm2/s • LHC is a top factory! Inverse ratio of production mechanism as compared to Tevatron • Top decay: 100% t bW • Other rare SM decays: • CKM suppressed t sW, dW: 10-3 –10-4 level • tbWZ: O(10-6) • difficult, but since mt mb+mW+mZ sensitive to mt • & non-SM decays, e.g. t bH+ J. Mnich: SM Physics at the LHC
Measurement of the Top Mass: Motivation t W+ W+ b H W,Z 1-r (1- )(1-rW) rW (mt2-mb2) Top mass from Tevatron: rW log mH J. Mnich: SM Physics at the LHC
Top Mass from Semi-Leptonic Events Atlas • Easiest channel tt bb qq l • Large branching ratio • Easy to select tt bb qq events from CMS & ATLAS J. Mnich: SM Physics at the LHC
Top Mass from Semi-Leptonic Events j1 W j2 t b-jet Atlas Reconstruct mt from hadronic W decay Constrain two light quark jets to mW J. Mnich: SM Physics at the LHC
Top Mass from Semi-Leptonic Events • 3.5 million semileptonic events in 10 fb-1 • (first year of LHC operation) • Error on mt 1 – 2 GeV • Dominated by • Jet energy scale (b-jets) • Final state radiation J. Mnich: SM Physics at the LHC
Top Mass from Other Channels • Di-lepton events: • BR 5% • low background • but two neutrinos in final state • mt 1.7 GeV • Fully hadronic events: • BR 45% • difficult jet enviroment • mt 3 GeV J. Mnich: SM Physics at the LHC
Top Mass from J/ channel 1000 events/y @ 1034 • Method: • Partial reconstruction of top • J/ + lepton • independent of jet energy scale • limited by b fragmentation • & needs high luminosity • Estimated ultimate precision: • mt 1 GeV J. Mnich: SM Physics at the LHC
W Polarization Massive gauge bosons have three polarization states • At LEP in e+e W+W : • determine W helicity from lepton (quark) decay angle in W rest frame • (1 cos )2 transverse • sin2 longitudinal • Fraction of longitudinal W • in e+e W+W • 0.218 0.031 • SM: 0.24 • Tevatron: • Longitudinal W in top decays • 0.91 0.52 CDF • 0.56 0.31 D0 • SM: 0.7 J. Mnich: SM Physics at the LHC
W Polarization in Top Decays Standard Model prediction: detector simulation & acceptance • precision on fraction of long. pol. W: 0.023 (stat) 0.022 (sys) J. Mnich: SM Physics at the LHC
tt Spin Correlation • Very short lifetime, • no top bound states • Spin info not diluted by hadron formation • Distinguishes between • quark annihilation • A = -0.469 • and gluon fusion • A = +0.431 Use double leptonic decays tt bb l l A= 0.311 0.035 0.028 (using 30 fb-1) J. Mnich: SM Physics at the LHC
Single Top Production • direct measurement of Vtb • observable by Tevatron in Run II • LHC t 1.5 t • Selection: • t bW b e () • b-jet + high pT lepton • reconstruction of top mass • Background from tt • signal to bkgd. 3.5 : 1 Production mechanisms and cross sections: 245 pb 60 pb 10 pb experimental determination of Vtb to percent level (with 30 fb-1) J. Mnich: SM Physics at the LHC
Determination of Top Charge Qt = +2/3 Qt = -4/3 Atlas • Top charge: • Qt = +2/3 not yet established t W+b • Qt = -4/3 not yet excluded t W–b • LHC: • Determine charge from rate of radiative tt events • pT spectrum of photons for 10 fb-1: J. Mnich: SM Physics at the LHC
Measurement of tt cross section • Total cross section: • At 14 TeV interesting in itself • Sensitive to top mass tt 1/mt2 • Differential cross sections: • d/dpT checks pdf • d/d checks pdf • d/dmtt sensitive to production of heavy object decaying to top-pairs Xtt 1.6 TeV resonance xBR required for a discovery 30 fb-1 σxBR [fb] 300 fb-1 Mtt mtt [GeV/c2] J. Mnich: SM Physics at the LHC
Summary & Conclusions • SM physics at the LHC • Very important in initial phase • to check detector • to check generators (pdf) • to prepare discoveries • Large potential for precision measurements • large cross sections • precision limited by systematics • use as many different strategies as possible Credits: Marina Cobal, Matt Dobbs, Fabiola Gianotti, Alexander Oh, Dominique Pallin, Sergey Slabospitsky J. Mnich: SM Physics at the LHC