europa lander mission concept and scientific goals n.
Skip this Video
Loading SlideShow in 5 Seconds..
Europa Lander: mission concept and scientific goals PowerPoint Presentation
Download Presentation
Europa Lander: mission concept and scientific goals

Loading in 2 Seconds...

play fullscreen
1 / 28

Europa Lander: mission concept and scientific goals - PowerPoint PPT Presentation

Download Presentation
Europa Lander: mission concept and scientific goals
An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Europa Lander: mission concept and scientific goals L. Zelenyi, O. Korablev, M. Martynov, E. Akim, A. Basilevsky, N. Eismont, A. Fedorova, V. Galchenko, M. Gerasimov, O. Kozlov, L. Ksanfomality, I. Lomakin, G. Managadze, M. Podzolko, G. Popov, A. Simonov, A. Sukhanov, E. Vorobyova, Yu. Agafonov, O. Prieto-Ballesteros, M. Blanc, J.P. Lebreton, R. Pappalardo and the Europa Lander Team IKI, NPOL, Keldysh Inst., Vernadsky Inst., Winogradsky Inst., Skobeltsyn Inst. MSU, NII PME, Soil faculty MSU, Centro Astrobiologica INTA, ESA ESTEC, Ecole Polytechnique, JPL. 1M-SSS 12 October 2010

  2. Jupiter’s Galilean satellites Europa, Ganimede and Callisto: a mantle of liquid water Europa: rock-water interface Io: tidal volcanism ICE SHELL >10 km Europa is the archetype of icy world habitability

  3. From Figueredo et al., 2003

  4. WHAT WE KNOW NOW FOR SURE ? WATER ICE IS DOMINATING (Pilcher et al. 1972, Clark and McCord, 1980, Clark 1981 OTHER IDENTIFIED MOLECULES SO2(Lane et al.,1981; Noll et al.,1995; Lane & Domingue,1997; Domingue & Lane,1998). CO2(Smythe et al., 1998, Carlson 2001). H2O2 (Carlson et al 1999a) AMORPHOUS H2O (Hansen & McCord, 2001) O2(Hall et al., 1995, 1998; Spencer & Calvin, 2002) Na, K(Johnson et al., 2002) SALT HYDRATES (McCord et al. 1998, 1999: Kargel et. al. 2000, Dalton et al. 2005) HYDRATES OF SULFURIC ACID (Carlson et al. 1999b, 2002)


  6. NASA & ESA share mission leadership Two independently launched and operated flight systems with complementary payloads EJSM-Laplace Jupiter Europa Orbiter Mission K. Clark et al. JPL M. Blanc, Ecole Polytechnique • Jupiter Europa Orbiter (JEO):NASA-led mission element • Jupiter Ganymede Orbiter (JGO):ESA-led mission element • Mission Timeline • Nominal Launch: 2020 • Jovian system tour phase: 2–3 years • Moon orbital phase: 6–12 months • End of Prime Missions: 2029 • ~10–11 Instruments on each flight system, including Radio Science 2/8/08 7

  7. JEO Baseline Mission Overview NASA-led portion of EJSM (Flagship) Extensively studied in 2007–2008 Objectives: Jupiter System, Europa Launch vehicle: Atlas V 551 Power source: 5 MMRTG or 5 ASRG Mission timeline: Launch: 2018 to 2022, nominally 2020 Uses 6-year Venus-Earth-Earth gravity assist trajectory Jovian system tour phase: 30 months Multiple satellite flybys: 4 Io, 6 Ganymede,6 Europa, and 9 Callisto Europa orbital phase: 9 months End of prime mission: 2029 Spacecraft final disposition: Europa surface impact 11 Instruments, including radio science Radiation dose: 2.9 Mrad (behind 2.5 mm of Al) Handled using a combination of rad-hard parts and tailored component shielding 2/8/08 8

  8. JEO: Paving the Way for a Future Lander • Safe for landing - Meter scale topography, heterogeneity, depth and porosity of regolith • High resolution imaging, laser altimetry, radar, thermal inertia • Fine scale processes: mass wasting, sputter erosion, sublimation, impact gardening, frost deposition • Best Targets for Science - Recent material exchange with subsurface (i.e. young in age) and rich in chemistry • High resolution imaging, radar, IR spectroscopy, thermal imaging 2/8/08 9

  9. A LANDER FOR EUROPA Increase of a perigee and inclination reduction, V=554м/с ra=20, rp=100, i=40° ra=20, rp=900, i=0° Cruis trajectory, V=5544 m/s, rp=100 Insertion into Jupiter orbit, V=445 m/s Gravity Assistant (G1) L. Gurvitz: PRIDE – direct radio link

  10. What to search for on the surface ? • Assess internal structure, measure the thickness of the ice crust • Assess the conditions on the surface • Measure the composition of the ice and admixtures in situ • Search for LIFE • Biomarkers • Chirality • Cells, fossils


  12. Main stages of mission • Proton/Breeze-M launch (target date 2020, as in the project of Federal Space Programme) • Electric propulsion transport module (separation in the vicinity of Jupiter) • Using Earth, Jupiter and Galilean satellites gravity assist maneuvers • Multiple fly-bys of Ganimede, Callisto and Europa; • Final circular orbit around Europa with a height of 100 km; • Separation of the Landing module and landing. Europa orbiter and supports telecommunication. Optional TM relay via NASA JEO or directly to Earth via VLBI. 13 Космический аппарат для посадки на Европу :: Техническое предложение

  13. Insertion into Europe orbit Initial orbit: - Pericenter radius 900 thousand km;- Apocenterradius 20 million km.- Period ~200 days T = 23 Month Manoeuvres 100 m/sCorrections during tour 50 m/sRendezvouswith Europe 145 m/sInsertion into Europe orbit (h = 100 km) 705 m/s Total 1000 m/s 14 Космический аппарат для посадки на Европу :: Техническое предложение

  14. Braking impulse 17.243 m/s Europe Initial orbit (100 km) Braking and landing Landing onto Europe surface • Main parameters of landing module • Tрrust 3000N- Specific impulse 220 s- Initial mass1210 kg- Mass on surface550 kg- Propellant mass 660 kg Landing orbit (20100 km) Total value of characteristic velocity ~1600 m/s Estimation of stability of a polar circular orbit (h=100 km): ~2 Month – without correction maneuvers ;1 Year– 200 m/s. 15 Космический аппарат для посадки на Европу :: Техническое предложение

  15. Spacecraft:: Overview 16 Космический аппарат для посадки на Европу :: Техническое предложение

  16. Landing module Scientific instruments unit Service system unit RTG 17 Космический аппарат для посадки на Европу :: Техническое предложение

  17. On the surface of Europa the radiation dose might be 20% of the dose on the orbit around Europa

  18. Landing site and radiation dose • Ideal landing site: • A place where the subsurface (the ocean) has communicated with the surface • Relatively young/unaltered by radiation processing, impact bombardment, etc. • Relatively flat and/or smooth • The smaller is the size of landing ellipse the more sites are available for landing • Radiation dose is substantially different for different sites Geology Castalia Macula: View from northwest Conamara Chaos

  19. Europa Lander Science: Some Conclusions from the ELW 2009 • Search for life on Europa, or signatures of life (metabolism) is the main appeal of the Europa Lander mission • Putative biota on Europa should be very rarified; sample preparation and concentration is required • Sample acquisition is critical: even shallow subsurface access is challenging, though absolutely needed for life detection experiments • Biology-driven experiments should provide valuable information regardless of the biology results (space exploration need not and cannot be hypothesis testing) • Establishing geophysical and chemical context of the environment is critical • Lander is to provide ground truth for remote measurements and enhance the detection limits

  20. Penetrators Thermal drill Measurements at the surface of Europa and access to the subsurface • Geophysics: • Ranging measurements • Sensors (seismometer, tiltometer) • Means of the access to the subsurface • µ-penetrator • Thermal drill – Melting probes • Chemical analysisMelting probe • GCMS • Raman-LIBS • Mass spectroscopy of secondary ions • Search for life • Microscopy • Raman spectroscopy • ATR spectroscopy • LIBS, • laser mass spectroscopy • Reasonable mass of Lander payload suite should not exceed 15-20 kg • Radiation tolerance and protection of instruments

  21. Means of access to the subsurface • No penetrators • No large melting probe • Drill ~ 50 cm or more (~20 kg: ExoMars) • “Small” melting probe (~4 kg Biele et al. 2010): one instrument inside? • Problem of ice sublimation

  22. POTENTIAL BIOMARKERS • Geochemical, mineralogical(silicates, carbonates, phosphorites, clorides) • Isotopic abundances • Organic matter • Biochemical metabolites • Gaseous metabolites • Chirality • Cells (anabiotic?) • Fossils IR spectroscopy GCMS, MALDI, Raman SELECTION OF METHODS: Multi functionality, Determination of multiple markers Redundancy in biomarker detection Testing on terrestrial analogs

  23. ≈25 kg + 4 melting probe + 5 manipulator +20 drill + 3 service/cables = 57 kg

  24. Absolute must ≈15 kg + 5 melting probe or manipulator  Further efforts on mass/instrument list optimization required

  25. Laplace-Europa Lander mission • Mission included in the project of Federal Space Programme • (Target launch date 2020-2021) • Launch:Proton + Breese-M, or equivalent heavy launcher (Angara…) • Mission Profile: • Transfer to Jupiter with Earth fly-by • Jupiter maneuver; multiple fly-bys of Ganimede, Callisto and Europa; Orbiting Europa (overall duration of 6.5-7 years) • Landing onto Europa surface, analysis of surface, and, possible shell subsurface material. • Data link via orbital spacecraft; limited direct radiolink to the Earth possible using advanced VLBI • Recurrent technical solutions • Orbital module, and Cruise module:Phobos SR (major modifications) • Landing module Luna-Resource (planned launch date 2013 , • major technology developments) • International context: • Europa Lander mission will be parallel to NASA/ESA EJSM-Laplace. NASA • EJSM Europa Orbiter data might be used for the choice of the landing sites

  26. EUROPA LANDER VERY DIFFICULT, BUT DOABLE ! Coordination with JEO Highly desirable