Download Presentation
## Chapter 14 â€“ Chemical Kinetics

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**How fast a chemical reaction occurs**Only need to consider the forward reaction Factors that affect rate Concentration of reactants Temperature Catalysts Surface Area Chapter 14 – Chemical Kinetics**B. Reaction Rates**• Rate is determined in the lab by experiment • Rate determined by measuring (-) disappearance of reactants (+) appearance of products**Example 1 – Rates of…**A + B C + D Rate of appearance of C Note the POSITIVE sign!! Rate of disappearance of A Note the NEGATIVE sign!!**C4H9Cl + H2O C4H9OH + HCl**Data Table 14.2 – Disappearance of C4H9Cl = 1.64 x 10-4 M/s**Example 2 – Rates with Coefficients**aA + bB cC + dD Note that the coefficient becomes a reciprocal value for rate comparison**Example 3 – Rate Comparison**2 N2O5 4 NO2 + O2 Given: RN2O5 = 4.2 x 10-7 M/s Calculate the rate of appearance of NO2**Example 3 – Rate Comparison**2 N2O5 4 NO2 + O2 Given: RN2O5 = 4.2 x 10-7 M/s The rate of O2 appearance is ½ the rate of N2O5 disappearance**Rate Law Expression**R = k [reactant]m • R = rate law expression • k = rate constant units are M-1s-1 Note: k depends upon temperature and nature of reaction • m = order of reaction • m=0 rate is independent of [ ]0 • m=1 rate is directly related to [ ]1 • m=2 rate is directly related to [ ]2**aA + bB products**• R = k [A]m[B]n m = order with respect to A n = order with respect to B Overall order of reaction is = m + n Note: order of reaction must be determined experimentally in the lab and cannot be simply concluded from the equation coefficients!!!!**2 N2O5 4 NO2 + O2**R = k[N2O5] • CHCl3 + Cl2 CCl4 + HCl R = k [CHCl3][Cl2] • H2 + I2 2 HI R = k [H2] [I2]**Method of Initial Rates**A + B C**First Order Reactions**• Using Calculus… ln [A]t – ln [A]0 = -kt or ln [A]t /[A]0 = -kt [A]0=original conc [A]t=conc @ time, t k = rate constant t = time**[A]**t ln [A] t Graphing First Order Reactions ln [A]t = -k t + ln [A]0 y = m x + b This is NOT a linear plot…. Scientists like linear plots**Example – 1st Order**• The decomposition of an insecticide in H2O is first order with a rate constant of 1.45 yr -1. On June 1st, a quantity of 5.0x10-7 g/cm3 washed into a lake. insect product R = k [insect] • What is the concentration on June 1st next year? ans. [insect]t=1yr = 1.17x10-7 g/cm3 b) How long will it take for the [insect] to drop to 3.0x10-7 g/cm3? ans. t = 0.35 years = 4 months**1st Order Reactions, Half-Life**The time that it takes for Original concentration to Drop to ½ of its original concentration.**1**[A] Second Order Reactions y = m x + b • Using Calculus… [A]0=original conc [A]t=conc @ time, t k = rate constant t = time slope=k t**2nd Order Reactions, Half-Life**t1/2= 1 k[A]0**1**[A] ln [A] t To Determine Order You Must Graph the Data y = m x + b y = m x + b 1st Order 2nd Order slope=k t**Activation Energy, Ea**• Molecules must collide to react • Not all collisions result in a reaction • The higher the collision frequency, the faster the reaction rate a. increase temperature b. increase pressure or decrease volume (for gas only) c. catalyst d. increase [conc]**Activation Energy, Ea**• Activation energy, Ea – the minimum energy needed to start a reaction • Activated complex – intermediate product forming before the reaction is completed**Activated Complex**A* The bigger Ea, the slower the rate Ea A Energy E B Reaction progress For A B exothermic E (-) For B A endothermic E (+) + Ea**Arrhenius Equation – Rate and Temperature**k=rate const A=frequency Ea=Activation energy R=gas const 8.31 J/mol K T=Temperature (Kelvin)**Yintercept= ln A**ln k Slope = - Ea R 1/ T Graphing Arrhenius Note: to obtain Ea, you must multiply slope by the gas constant