html5-img
1 / 21

Implicit Surfaces

Implicit Surfaces. CS 319 Advanced Topics in Computer Graphics John C. Hart. Implicit Surfaces. f = 0. f < 0. f > 0. Real function f ( x , y , z ) Classifies points in space Image synthesis (sometimes) inside f > 0 outside f < 0 on the surface f = 0

dori
Download Presentation

Implicit Surfaces

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Implicit Surfaces CS 319 Advanced Topics in Computer Graphics John C. Hart

  2. Implicit Surfaces f = 0 f < 0 f > 0 • Real function f (x,y,z) • Classifies points in space • Image synthesis (sometimes) • inside f > 0 • outside f < 0 • on the surface f = 0 • CAGD: inside f < 0, outside f > 0 • Surface f-1(0): Manifold if zero is a regular value of f f = 0 f > 0 f < 0

  3. Why Use Implicits? • v. polygons • smoother • compact, fewer higher-level primitives • harder to display in real time • v. parametric patches • easier to blend • no topology problems • lower degree • harder to parameterize • easier to ray trace

  4. Conversion • Implicitization: parametric -> implicit • find f given p s.t. f (p(s,t)) = 0 • elimination, resultants [Sederberg 83] • “moving surfaces” method reduces degree • Parameterization: implicit -> parametric • find p given f s.t. f (p(s,t)) = 0 • Creates parametric patches • Polygonization • Texture mapping

  5. Surface Normals • Surface normal usually gradient of function f(x,y,z) = (df/dx, df/dy, df/dz) • Gradient not necessarily unit length • Gradient points in direction of increasing f • Outward when f < 0 denotes interior • Inward when f > 0 denotes interior

  6. Plane x N • Plane bounds half-space • Specify plane with point p and normal N • Points in plane x are perp. to normal N • f is distance if ||N|| = 1 f > 0 p x f < 0 f(x) = (x-p)N

  7. Quadrics f (x,y,z) =Ax2 + 2Bxy + 2Cxz + 2Dx + Ey2 + 2Fyz + 2Gy + Hz2 + 2Iz + J • Ellipsoid (Sphere): Ax2 + Ey2 + Hz2 – 1 = 0 • Cylinder: Ax2 + Ey2 – 1 = 0 • Hyperboloid (Cone): Ax2 + Ey2 - Hz2 + J = 0 • Paraboloid: Ax2 + Ey2 – 2Iz = 0

  8. Homogeneous Quadrics Homogeneous coordinates • [xyzw] • Divide by w to find actual coords: [x/wy/wz/w 1] f(x) = xTQx Transforming quadrics x Q xT = 0, x’ = xT find Q’ s.t. x’Q’x’T = 0 x = x’T* since x homo. x’T* Q (x’T*)T = 0 x’(T* QT*T)x’T = 0 Q’ = T* QT*T

  9. Torus r R • Product of two implicit circles (x – R)2 + z2 – r2 = 0 (x + R)2 + z2 – r2 = 0 ((x – R)2 + z2 – r2)((x + R)2 + z2 – r2) (x2 – Rx + R2 + z2 – r2) (x2 + Rx + R2 + z2 – r2) x4+2x2z2+z4 – 2x2r2–2z2r2+r4 + 2x2R2+2z2R2–2r2R2+R4 (x2 + z2 – r2 – R2)2 + 4z2R2 – 4r2R2 • Surface of rotation replace x2 with x2 + y2 f(x,y,z) = (x2 + y2 + z2 – r2 – R2)2 + 4R2(z2 – r2)

  10. Deforming Implicits • f on undeformed space • Affine • Scale: (ax,by,cz) (stretch, squash) • Shear: (x + ay + bz, y + cz, z) • Non-Affine (Barr S84) • Taper: (z x, z y, z) • Twist: (x cos z - y sin z, x sin z + y cos z, z) • Bend: look it up… ( f T-1)(x,y,z) f (T-1(x,y,z))

  11. Distance Surfaces • Sphere: d(x, point) – r • Cylinder: d(x, line) – r • Sphylinder: d(x, segment) – r • Torus: d(x, circle) – r • Generalize cylinder: d(x, curve) – r • Offset surface: d(x, surface) – r d(x,A) = min {||x-y|| : yA} Parametrics, algebraics not closed under offsetting

  12. CSG f < 0 g < 0 • Assume f < 0 inside • CSG ops by min/max ops • Union: min f,g • Intersection: max f,g • Complement: -f • Subtraction: max f,-g • Problem: C1 discontinuity • Can we smooth the blend crease? f < 0 g < 0

  13. Blending • Smooth surface that interpolates surfaces of two separate shapes • Applications: • Image Synthesis: Blobs, soft objects, metaballs • CAGD: Algebraic, Pseudonorm • Scope • Global: Affects entire shape • Local: Affects bounded region

  14. Blobs • Blinn TOG 1(3) 1982 • Sum of Gaussians ri2(x,y,z) = x2 + y2 + z2 f(x) = -1 + Sexp(-(Bi/Ri2)ri2 + Bi) B – blobbiness (positive) R – radius of blob at rest r – radius function

  15. Soft Objects 1 C(r) • Wyvill, McPheeters & Wyvill VC 86 • Exponential: too expensive, non-local • Approximate exp(-r2) with polynomial C() C(0) = 1, C(R) = 0, C’(0) = 0, C’(R) = 0 C(r2) = -(4/9)r6/R6 + (17/9)r4 /R4 – (22/9)r2 /R2 + 1 C(r) = 2r3 /R3 – 3r2 /R2 + 1 C(r) = (1 – r2/R2)3 (G2 continuity) Pair of quadratics (metaballs) 0 0 r R=1

  16. Algebraic Blends r2 s2 • Hoffman & Hopcroft VC 85 • Blend f -1(0) with g-1(0) • Consider shells f -1(s1), g-1(s2) • Blends occur where f -1(s1) intersects g-1(s2) • Define some h(s1,s2) = 0 • h(s1,s2) = (s1 – r1)2/r12 +(s2 – r2)2/r22 – 1 (ellipse) • Blend: H(x) = h( f (x),g(x)) • If f,g quadric, then H quartic, usually a torus • If f < r1 and g < r2 then return H otherwise return min f,g r1 s1

  17. y Pseudonorm Blend r2 S(x,y) = 1 - [1 - x/r1]t - [1 - y/r2]t • Rockwood Geometric Modeling: Algorithms & Trends 1987, Ed. Farin. • Local blend • r1,r2 extent of blend • t adherence x r1 BU ( f,g) = 1 - [1 - f/r1]t - [1 - g/r2]t BI ( f,g) = -BU (-f,-g)

  18. Blend Normals • H(x) = h( f (x),g(x)) • h(f,g) = A( f ) + B(g) + C, usually • H = A’( f ) f + B’(g) g • E.g. algebraic blend • h(f,g) = (f-a)2/a2 + (g-b)2/b2 – 1 • H = (2(f-a)/a2)f + (2(g-b)/b2)g • Normal of blend a blend of normals

  19. Hypertexture • Noise • Perlin S85 • Smoothly interp. random values • Noise range deformation • f(x,y,z) + N(x,y,z) • Islands of debris can form • Noise domain deformation • f((x,y,z) + DN(x,y,z)) • No debris

  20. Ray Tracing d o • Parametric ray • r(t) = o + td • anchor o • (unit) direction d • Solve implicit function on ray • F(t) = f(r(t)) • Real function of one variable • Zeroes of F  implicit surface ray intersections F t

  21. Finding Zeroes • Algebraic surfaces • DesCartes [Hanrahan S’84] • Lipschitz surfaces • LG-Surfaces [Kalra & Barr S’89] • Sphere Tracing [Hart 96] • Any surfaces • Interval Arithmetic [Mitchell 89] • Marching [Perlin & Hoffert 89]

More Related