1 / 20

Optical near-field control of nanoresonators

Optical near-field control of nanoresonators. Benoit Cluzel, Loïc Lalouat, Frédérique de Fornel. Near Field Optics Group OMR ICB - Université de Bourgogne. benoit.cluzel@u-bourgogne.fr. NaP. Collaborations. ACI NR63 « CHABIP ».

donoma
Download Presentation

Optical near-field control of nanoresonators

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Optical near-field control of nanoresonators Benoit Cluzel, Loïc Lalouat, Frédérique de Fornel Near Field Optics GroupOMR ICB - Université de Bourgogne benoit.cluzel@u-bourgogne.fr

  2. NaP Collaborations ACI NR63 « CHABIP » Philippe Velha, Emmanuel Picard, Thomas Charvolin, Emmanuel Hadji Nicolas Louvion, Christian Seassal, Ségolène Callard Philippe Lalanne David Peyrade benoit.cluzel@u-bourgogne.fr

  3. Introduction Optical resonators Light confinement inside a volume V with an efficiency Q For single photon sources, ultra low treshold lasers, enhanced light matter-interactions. Figure of merits : Q/V benoit.cluzel@u-bourgogne.fr

  4. Introduction Near-Field control of optical resonators • to probe the electromagnetic field confinement • - to manipulate mechanically the confinement ? benoit.cluzel@u-bourgogne.fr

  5. Introduction at the nanometer scale… benoit.cluzel@u-bourgogne.fr

  6. Outline 1/ Resonators of nanophotonics 2/ Optical near-field microscopy 3/ Near-Field Probing of light confinement 4/ Near-Field Manipulation of light confinement benoit.cluzel@u-bourgogne.fr

  7. 1/ Resonators of Nanophotonics Spherical/Toroïdal resonators Photonic crystal resonators 50µm 1µm Akahane et al, Nature 425 (2003) Kippenberg et al, Nature 421 (2003) Refraction Diffraction Light confinement with ultra- high Q Q~106-108 V~50µm3 Light confinement in ultra- small V Q~104-106 V~0.1µm3 benoit.cluzel@u-bourgogne.fr

  8. Evanescent wave collection & mapping + Topographical pictures Near-field probe Exponential decay of the field Decay length ~100nm OPTICAL NEAR FIELD Near-field Microscopy : Evanescent waves imaging : Sub- wavelength resolution Optical Microscopy : Propagative waves imaging : Resolution > l/2 (Rayleigh limit) 2/ Optical near-field imaging of nanoresonators n1 n2 n1 benoit.cluzel@u-bourgogne.fr

  9. 3/ Near-field probing of light confinement Experimental approach: PL l=1550nm Optical pumping l=780nm InGaAs QWs InP SiO2 Si benoit.cluzel@u-bourgogne.fr

  10. 3/ Near-field probing of light confinement Experimental results: 4µm 1µm 4µm 4µm 1µm Resolution ~ l/10 < Rayleigh limit benoit.cluzel@u-bourgogne.fr

  11. 3/ Toward a Near-field control of confined light What about the effect of the near-field probes ??? benoit.cluzel@u-bourgogne.fr

  12. ???? But What happens if 3/ Toward a Near-field control of confined light General assumptions: 1- Since the probe volume remains largely lower than the cavity volume 2- The losses introduced by the presence of the probe are lower than the cavity losses The probe is not a perturbative element of the system benoit.cluzel@u-bourgogne.fr

  13. 3/ Toward a Near-field control of the confined light Let consider a state of the art nanocavity with: An ultra low-volume : V=(l/n)3 A high Q-factor: Q~104-105 1µm benoit.cluzel@u-bourgogne.fr

  14. 3/ Toward a Near-field control of the confined light «  pump – probe » experiments with a near-field tip benoit.cluzel@u-bourgogne.fr

  15. Tip up IT(l) Tip down ~100nm SiO2 Q=11000 z >100nm Near-Field Interaction z =4nm Light in The probe acts as an optical path length modulator Losses introduced by the probe << Cavity Losses 3/ Basics of Optical Near-Field interactions Q=12000 benoit.cluzel@u-bourgogne.fr

  16. Evanescent interaction between probe and cavity 3/ Basics of Optical Near-Field interactions benoit.cluzel@u-bourgogne.fr

  17. Interaction map @ lup Interaction map @ ldown 600nm 600nm Dielectric pertubation of the Electric field 3/ Optical Near-Field interactions mapping lup ldown benoit.cluzel@u-bourgogne.fr

  18. Time scale for switching limited by mechanical resonance =>could excess the MHz range with the integration of cantilevers Near-Field Switch 3/ Optical Near-Field interactions control benoit.cluzel@u-bourgogne.fr

  19. Conclusion From Passive to Active Near Field Optics Sub-l manipulation of the light confinement in nanoresonators Sub-l probing of the light confinement in nanoresonators 4µm Publications: Gérard et al, Opt. Lett.27, 2002 Cluzel et al, App. Phys. Lett.85, 2004 Louvion et al, Phys Rev. Lett. 94 2005 Cluzel et al, J. App Phys.98, 2005 Cluzel et al, App. Phys. Lett.88, 2006 benoit.cluzel@u-bourgogne.fr

  20. A post-doctoral position available now! In the Near-Field Optics Group (Université de Bourgogne, France) Contact:benoit.cluzel@u-bourgogne.frffornel@u-bourgogne.fr

More Related