1 / 6

# Slope Fields - PowerPoint PPT Presentation

This is the slope field for. Equilibrium Solutions. Slope Fields. We get an approx. graph for a solution by starting at an initial point and following the arrows. Local Linearity and Approximation. Slope = f’ ( t 0 ). Euler’s Method. Here’s how it works.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about ' Slope Fields ' - donna-saunders

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Equilibrium Solutions

Slope Fields

We get an approx. graph for a solution by starting at an initial point and following the arrows.

Slope= f’(t0)

Here’s how it works.

Suppose we have a DE that tells us the value of the derivative of a function at any point and an initial condition.

We can build an approximate graph of the solution using local linearity to approximate over and over again. This iterative procedure is called Euler’s Method.

Dt

What’s needed to get Euler’s method started?

• Well, you need a differential equation of the form:

• y’ = f (t , y)

• And an initial condition (t0,y0) that lies on the graph of the solution function y(t).

A smaller step size will lead to more accuracy, but will also take more computations.

• Finally, you need a fixed step size

• Dt.

New t = Old t + Dt

New y = Old y + Dy = Old y + f (Old t, Old y)) Dt

y’= sin(t2)

and (1,1) lies on the graph of y = y(t), then 1000 steps of length .01 yield the following graph of the function y.

This graph is the anti-derivative of sin(t2); a function which has no elementary formula!

Suppose that y’ = t sin(y) and (1,1) lies on the graph.

Let Dt=.1.

New t = Old t + Dt

New y = Old y + Dy = Old y + y’(Old t, Old y) Dt