1 / 13

向量的加法与减法

向量的加法与减法. 思考 : 在物理中 , 如何求两个力的合力 ?. 平行四边形法则;四边形法则. B. C. c. O. A. A. O. C. O. O. A. A. C. 向量的加法满足交换律与结合律:. 例 1 、已知平面内有三个非零向量 它们的模都相等 , 并且两两的夹角都是 120 0 , 求. B. D. A. C. 推广到 n 边形. 向量的减法. 找一对相等的向量.

donald
Download Presentation

向量的加法与减法

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 向量的加法与减法

  2. 思考:在物理中,如何求两个力的合力? 平行四边形法则;四边形法则 B C c O A A O

  3. C O O A A C

  4. 向量的加法满足交换律与结合律:

  5. 例1、已知平面内有三个非零向量 它们的模都相等,并且两两的夹角都是1200,求

  6. B D A C 推广到n边形

  7. 向量的减法

  8. 找一对相等的向量

  9. 4、如图,已知三角形ABC的两边AB、AC的中点分别为M、N,在BN的延长线上取点P,使NP=BN,在CM的延长线上取点Q,使MQ=CM,试用向量的方法证明P、A、Q三点共线。4、如图,已知三角形ABC的两边AB、AC的中点分别为M、N,在BN的延长线上取点P,使NP=BN,在CM的延长线上取点Q,使MQ=CM,试用向量的方法证明P、A、Q三点共线。 C P N B A M Q

  10. 同向;反向两类2/2或4

More Related