1 / 50

Markov Chains

Markov Chains. and hidden Markov models. Motivation - CpG islands :. CpG is a pair of nucleotides C and G , appearing successively , in this order, along one DNA strand. CpG islands are particular short subsequences in them the couple CpG is more frequent.

dima
Download Presentation

Markov Chains

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Markov Chains and hidden Markov models

  2. Motivation - CpG islands : • CpG is a pair of nucleotides C and G , appearing successively , in this order, along one DNA strand. • CpG islands are particular short subsequences in them the couple CpG is more frequent. • These CpG islands are known to appear in biologically more significant parts of the genome.

  3. Two problems involving CpG islands: • Given a short genome sequence, decide if it comes from a CpG islands or not. • Given a long DNA sequence, locate all the CpG islands in it.

  4. Markov chain model We like to show a Markov chain graphically as a collection of ‘states’ , each of which corresponds to a particular residue , with arrows between the states.

  5. Formal definition : • A Markov chain is a triplet (Q,{p( x1 = s )},A), where : • Q is a finite set of states. Each state corresponds to a symbol in the alphabet  . • Initial state probabilities. • A is the state transition probabilities, denoted by astfor each s,t  Q • For each s,t  Q the transition probability is: • ast  P ( x i = t | x i-1 = s )

  6. For any probabilistic model of sequences we can write the probability of the sequence as : P(x) = P (xL, xL-1,…..,x1) By applying P(X,Y) = P(X|Y) P(Y) many times:

  7. Begin and end states ( and ) can be added to a Markov chain. P(x1 = s) = as P(| xL = t) = at  

  8. Problem 1 : Identifying a CpG island INPUT : A short DNA sequence X = (x1 , …. , xL)  (where  = { A,C,G,T }). QUESTION : Decide whether X is a CpG island. We can use two Markov chain models to solve this problem : one for dealing with CpG islands (the ‘+’ model) and the other for dealing with non CpG island (the ‘-’ model).

  9. The transition probabilities in each model are derived from a collection of human gene sequences, containing 48 putative CpG islands. • c+st is the number of times letter t followed letter s in the CpG chain. • a+st denote the transition probability of s,t  inside a CpG island.

  10. Each row sums to one • The table is asymmetric

  11. Therefore we can compute a logaritmic likelihood score for a sequence X by : The higher this score, the more likely it is that X is a CpG island.

  12. CpG islands sequences shown in dark grey and non-CpG sequences in light grey.

  13. Problem 2 : Location CpG islands in a DNA sequence INPUT : A long DNA sequence X = (x1 , …. , xL)  (where  = { A,C,G,T }). QUESTION : Locate the CpG islands along X.

  14. A naive approach • Extract a sliding window Xk = (xk+1 , … , x k+l ) (where l << Land 1 k  L – l) from the sequence. • Calculate Score(Xk) for each one of the resulting subsequences. • Subsequences that receive positive scores are potential CpG islands. main disadvantage : We have no information about the lengths of the islands.

  15. A better solution : Combine the two markov chains of the previous problem into a unified model, with a small probability of switching from one chain to the other at each transition point.

  16. In the new model : A+ , C+ , G+ and T+ emit A,C,G and T respectively in CpG island regions, and A-,C-,G- and T- corresponding in non-islands regions. State:A+ , C+ , G+ , T+ ,A-, C-, G- , T-Emitted Symbol:A C G T A C G T

  17. Hidden Markov Models • A Hidden Markov Model (HMM) is a triplet M = ( , Q , ), where: •  is an alphabet of symbols. • Q is a finite set of states, capable of emitting symbols from the alphabet . •  is a set of probabilities, comprised of: • State transition probabilities • Emission probabilities

  18. State transition probabilities : • The state sequence  = (1 ,…, L) is called a path. • the probability of a state depends only on the previous state: akl = P ( i = l |  i-1 = k ) Emission probabilities : • The symbol sequence is X = (x1 ,….,xL)  • Emission probability is the probability that symbol b is seen when in state k : ek(b) = P (x i = b |  i = k )

  19. The probability that the sequence X was generated by the model M given the path  is therefore: Where for our convenience we denote : 0 = begin and L+1 = end.

  20. Example : modeling a dishonest casino dealer

  21. Problem 3 : decoding INPUT : A hidden Markov model M = ( , Q , ) and a sequence X  , for which the generating path  = (1 ,…, L) is unknown. QUESTION : Find the most probable generating path  for X In general there may be many state sequences that could give rise to any particular sequence of symbols.

  22. In our example : (C+,G+,C+,G+) , (C-,G-,C-,G-) and (C+,G-,C+,G-) would all generate the symbol sequence CGCG. However, they do so with very different probabilities. We are looking for a path such that P(X , ) is maximized.  = argmax  {P(X , ) }

  23. Viterbi algorithm • This algorithm is based on dynamic programming . • The most probable path * can be found recursively. • Suppose the probability vk(i) of the most probable path ending in state k with observation i is known for all states k. then these probabilities can be calculated for observation xi+1 as :

  24. The algorithm : • Time complexity: O(L|Q|2) • Space complexity: O(L|Q|)

  25. Example 1 : CpG islands The values of v for the sequence CGCG.

  26. Example 2 : The casino

  27. Problem 4 : Posterior Decoding INPUT : A hidden Markov model M = ( , Q , ) and a sequence X  , for which the generating path  = (1 ,…, L) is unknown. QUESTION : What the probability that observation xi came from state k given the observed sequence? i.e. P(i = k|X). This is the posterior probability of state k at time i when the emitted sequence X is known.

  28. To answer this question we need two algorithms, both assume that X is known and i = k : • Forward algorithm - fk(i) = P(x1…xi ,i = k) The probability of emitting the prefix (x1,…,xi). • Backward algorithm - bk(i) = P(xi+1…xL|i = k) The probability of the suffix (xi+1,…,xL).

  29. what is p(x)? • In order to find P(i = k|X). We need to know p(x). In Markov chains, the probability of a sequence was calculated by the equation : What is the probability P(x) for an HMM ?

  30. In HMM… • many different state paths can generate the same sequence x • The probability of x is sum of the probabilities for all possible paths. • The number of possible paths  increases exponentially with the length of the sequence • Enumerating all paths is not practical

  31. Forward algorithm • one approach : We can use probability of Viterbi path * as an approximation to P(x). • In fact , the full probability can itself be calculated by a dynamic programming (like Viterbi), replacing the maximization steps with sums.

  32. The algorithm :

  33. Backward algorithm Calculate the probability of the suffix (xi+1,…,xL). bk(i) = P(xi+1…xL|i = k) The recursion start at the end of the sequence.

  34. Back to the posterior problem… Now we can calculate P(i = k|X). Where P(x) is the result of the forward (or backward) algorithm.

  35. Some comments … In Viterbi , Forward and Backward algorithms : • Complexity - Time complexity: O(L|Q|2) - Space complexity: O(L|Q|) • working in log space to avoid underflow errors when implemented on computer.

  36. The casino example Prob. Of fair die Number of the roll • The posterior probability of being in a fair die throughout the sequence • Loaded die used in blue areas

  37. Uses for Posterior Decoding - Two alternative forms of decoding : 1. When many different paths have almost the same probability as the most probable one, then we may want to consider other possible paths as well. ** = argmaxk {P(i = k|X)} * ** may not be a legitimate path, if some transitions are not permitted.

  38. When we’re not interested in the state sequence itself, but in some other property derived from it. For example : g(k) = 1 if k  {A+,C+,G+,T+}, 0 otherwise. G(i | x) is posterior probability that base i is in a CpG island.

  39. Parameter estimation • The most difficult problem faced when using HMMs is specifying the model : • Design the structure : which states and the connection between them. • The assignment of the transition and the emission probabilities akl and ek(b).

  40. Given training sequences X1,…,Xn * of length L1,…,Ln respectively, which were all generated from the HMM M = ( , Q , ). however, the values of the probabilities in , are unknown. We want to construct an HMM that will best characterize X1,…,Xn . We need to assign values to  that will maximize the probability of X1,…,Xn .

  41. since the sequences where generated independently, Probability of X1,…,Xn with  is: Using the logarithmic score our goal is to find * such that:

  42. The sequences X1,…,Xn are usually called the training sequences We shell examine two cases for parameter estimation: • Estimation when the state sequence is known. • Estimation when the state sequence is unknown.

  43. Estimation when the state sequence is known When all the paths are known, we can count the number of times each particular transition or emission is used in the set of training sequence. Akl - number of transitions from the state k to l in all the state sequences Ek(b) –the number of times that an emission of the symbol b occurred in state k in all the state sequences.

  44. Laplace`s correction • In order to avoid zero probability we will use : Where usually rkl and rk(b) Are usually equal 1.

  45. Estimation when the state sequence is unknown In the case that the state sequences are not known, the problem of finding the optimal set of parameters * is known to be NP-complete. • The Baum-Welch algorthim is a heuristic algorithm for finding a solution to the problem • Baum-Welch algorithm , which is a special case of the EMtechnique (Expectation and maximization).

  46. Baum-Welch algorithm Initialization: Assign arbitrary values to . Expectation:calculates Akl and Ek(b) as the expected number of times each transition is used, given the training sequences. Probability that akl is used at position i in sequence x is:

  47. Sum over all positions and training sequences to get Akl Similary ,we can find the expected number of times that letter b appears in state k.

  48. Maximization: update the values of akl and ek(b) according to the equations: This process is iterated until the improvement of Score(X1,…,Xn|) is less then a given parameter .

  49. Baum-Welch converges to local maximum of the target function Score(X1,…,Xn|) • Main problem : may exist several local maximum. • Solution : • run the algorithm several times, each time with different initial values for . • Start with  values that are meaningful.

  50. References • Hidden markov models / ron shamir http://www.math.tau.ac.il/~rshamir/algmb/98/scribe/html/lec06/node1.html • Biological Sequence Analysis , Durbin et el,chapter 3

More Related