1 / 7

用法向量求距离

用法向量求距离. P. C. D. O. B. A. 1 、已知正四面体 P-ABC ,棱长为 1 ,求点 P 到平面 ABC 的距离。. 解:设平面 ABC 的法向量 n = (x,y,z),. AB=(2,-2,1), AC=(4,0,6). ∵ n · AB=0 2x-2y+z=0 n · AC=0 4x+6z=0. 令 x=3 ,则 y=2 , z=-2. 即 n=(3,2,-2). 又因为 AD=(-7,-7, 7),. 17. 49. 49. n · AD. =. =. 所以 d=. 17. n.

derora
Download Presentation

用法向量求距离

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 用法向量求距离

  2. P C D O B A 1、已知正四面体P-ABC,棱长为1,求点P到平面ABC的距离。

  3. 解:设平面ABC的法向量n=(x,y,z), AB=(2,-2,1), AC=(4,0,6) ∵ n·AB=0 2x-2y+z=0 n·AC=0 4x+6z=0 令x=3,则y=2,z=-2 即n=(3,2,-2) 又因为AD=(-7,-7, 7), 17 49 49 n·AD = = 所以d= 17 n 17 2、设A(2,3,1),B(4,1,2),C(6,3,7),D(-5,-4,8) 求点D到平面ABC的距离。

  4. 解:如图建立坐标系,A(a,0,0),B(a,a,0),C(0,a,0),M(0,0,a),E(a,0,a)解:如图建立坐标系,A(a,0,0),B(a,a,0),C(0,a,0),M(0,0,a),E(a,0,a) F(0,a,a),P(a/2,0,a/2) 设平面EFB的法向量为n(x,y,z) 又因为EF=(-a,a,0),EB=(a,0,-a) z -ax+ay=0 n⊥EF M ∴ F ay-az=0 n⊥EB 令x=1,则y=1,z=1 ∴n=(1,1,1) E 又∵PE=(a/2,0,a/2) P 3 a n·PE D a = = C y 所以d= 3 n 3 A B x 3、如图所示,已知四边形ABCD、EADM和MDCF都是边长为 a 的正方形,点P是ED的中点,求点P到平面EFB的距离

  5. 解:(2)如图建立坐标系,则D(0,0,0),A(1,0,0),C(0,1,0),A1(1,0,1)解:(2)如图建立坐标系,则D(0,0,0),A(1,0,0),C(0,1,0),A1(1,0,1) DA1=(1,0,1),AC=(-1,1,0) 设向量DA1与AC构成平面的法向量为n=(x,y,z) z x+z=0 n⊥DA1 ∴ D1 -x+y=0 C1 n⊥AC 令x=1,则y=1,z=-1 ∴n=(1,1,-1) A1 B1 DA=(1,0,0) 3 1 n·DA D = = C y 所以d= 3 n 3 A B x 4、已知正方体ABCD-A1B1C1D1的棱长为 1, (1)口答:直线A1D1与AB的距离;直线A1D1与AC的距离. (2)求直线DA1与AC间的距离。

  6. 解:如图建立坐标系,A(a,0,0),B(a,a,0),C(0,a,0),M(0,0,a),E(a,0,a)解:如图建立坐标系,A(a,0,0),B(a,a,0),C(0,a,0),M(0,0,a),E(a,0,a) F(0,a,a),P(a/2,0,a/2) 设平面EFB的法向量为n(x,y,z) 又因为EF=(-a,a,0),EB=(a,0,-a) z -ax+ay=0 n⊥EF M ∴ F ay-az=0 n⊥EB 令x=1,则y=1,z=1 ∴n=(1,1,1) E 又∵PE=(a/2,0,a/2) P P 3 a n·PE D a = = C y 所以d= 3 n 3 Q A B x 3、如图所示,已知四边形ABCD、EADM和MDCF都是边长为a的正方形,点P是ED的中点,求点P到平面EFB的距离 若Q为AC的中点,求异面直线PM与FQ的距离。

  7. 欢 迎 指 正 ! 谢 谢

More Related