slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Rasterizzazione PowerPoint Presentation
Download Presentation
Rasterizzazione

Loading in 2 Seconds...

play fullscreen
1 / 55

Rasterizzazione - PowerPoint PPT Presentation


  • 101 Views
  • Uploaded on

Rasterizzazione. Prof. Roberto Pirrone. Sommario. Algoritmi per il drawing DDA Midpoint Tracciamento di curve Tracciamento di linee con spessore e stile Algoritmi per il filling Active Edge Table Algoritmi per il clipping Cohen-Sutherland Liang-Barsky Sutherland- Hodgman

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Rasterizzazione' - delfina-ordell


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1
Rasterizzazione

Prof. Roberto Pirrone

sommario
Sommario
  • Algoritmi per il drawing
    • DDA
    • Midpoint
    • Tracciamento di curve
    • Tracciamento di linee con spessore e stile
  • Algoritmi per il filling
    • Active EdgeTable
  • Algoritmi per il clipping
    • Cohen-Sutherland
    • Liang-Barsky
    • Sutherland-Hodgman
  • Antialiasing
    • Unweighted Area Sampling
    • WeightedArea Sampling
    • Newmann-Sproull
generalit
Generalità

La rasterizzazione è legata a tutto ciò che comporta il prendere una decisione sul colore di un pixel da accendere sullo schermo.

Essa è la parte finale della pipeline di rendering.

E’ inserita, di solito, nel ciclo dell’algoritmo scan-line

generalit1
Generalità

Nella pipeline di rendering, la rasterizzazione è affidata ai fragment o pixel shader

Questi determinano se le proprietà di colore di un pixel possono essere propagate ad un intero frammentodi linea di scansione in modo da applicare gli algoritmi coinvolti in parallelo

generalit2
Generalità
  • Oltre alle tecniche legate alla determinazione di ombreggiatura, trame o trasparenza, la rasterizzazione include:
    • Drawing, cioè ilproblema del tracciamento di primitive bidimensionali (eventualmente proiezioni di primitive 3D)
    • Filling, cioè il riempimento di una figura chiusa con un colore(colore solido, sfumatura, trama, trasparenza tra più colori …)
    • Clipping, cioè il troncamento di una linea rispetto ad altre linee presenti (proiezioni di poligoni che si occludono, bordi esterni dell’immagine cioè del front plane del volume di vista mappato sullo schermo)
    • Antialiasing, cioè riduzione dell’effetto di sotto-campionamento dell’immagine generata dovuto alla risoluzione spaziale fissa data dalla dimensione del pixel.
drawing
Drawing

Il problema principale è quello del tracciamento di un segmento di retta, visto che si parte da un mondo popolato da poligoni piani.

Il tracciamento avviene all’interno di una grigia regolare di pixel che hanno distanza unitaria in ascissa e in ordinata (coordinate schermo)

algoritmo dda
Algoritmo DDA

Calcola m=(y1-y0)/(x1-x0)

Se |m|<=1 allora

Poni y=y0

Ripeti per x=x0; x<=x1; x++

Accendi il punto (x,round(y))

y+=m

Altrimenti

Poni x=x0

Ripeti per y=y0; y<=y1; y++

Accendi il punto (round(x), y)

x+=(1/m)

algoritmo dda incrementale
Algoritmo DDA Incrementale

x=x0, num=x1-x0, den=y1-y0, delta=0;

Ripeti per y=y0;y<=y1;y++

Accendi il pixel di coordinate (x,y)

delta+=num

Se delta>den

x++;

delta=0;

algoritmo midpoint
Algoritmo Midpoint

Si assumerà inizialmente di considerare m>0 e, in particolare, m ∈ [0,1].

La soluzione per le altre pendenze si può ottenere semplicemente per riflessione della geometria illustrata in figura rispetto agli assi principali.

Si consideri di aver già acceso i pixel della primitiva fino al generico punto P di coordinate (xp, yp).

algoritmo midpoint1
Algoritmo Midpoint

L’idea di base di questo approccio è quella di individuare, passo dopo passo, il pixel più vicino all’effettivo punto di intersezione Q tra la retta e l’ascissa x = xp+ 1 corrispondente al successivo punto da accendere.

I candidati, ad ogni passo sono solo i due pixel E (xp+1, yp) ovvero NE (xp+1, yp+1).

Per far questo si valuterà il passaggio della retta, espressa in forma implicita F(x, y) = ax+ by + c = 0 , per il punto medio M (xp+1, yp+1/2)

algoritmo midpoint2
Algoritmo Midpoint

Ripeti per ogni punto da accendere

Se F(M)>0 // la retta passa sopra M

Accendi NE

Altrimenti // F(M)<=0 la retta passa per M o al di sotto

Accendi E

algoritmo midpoint3
Algoritmo Midpoint

L’implementazione è, anche in questo caso, incrementale.

Si consideri l’equazione della retta in forma implicita:

y=mx+q=(y1 − y0)/(x1 - x0)x+q=(dy/dx)x+q.

Allora la forma esplicita si ottiene come: F (x, y) = dy⋅x − dx⋅y+ dx⋅q= ax+ by+ c = 0

Si definisce una variabile di decisioned

Per d > 0 si accenderà NE, mentre per d ≤ 0 si accenderà E.

L’algoritmoconsiste nelcalcolare incrementalmente la sola variabile di decisione.

Se ad un certopassop+1 si accendeil pixel E, allorailnuovo valore dellavariabilednew, noto doldal passo precedente p, si ottiene come:

algoritmo midpoint4
Algoritmo Midpoint

Alternativamente, se al passop+1siaccendeil pixel NE, allora:

Il processo si inizializza calcolando il valore di partenza. Partendo da ( x0 , y0 ) calcoliamo dstart:

Per eliminare la divisione ed utilizzare solo l’aritmetica intera si può far riferimento alla nuova variabile di decisione 2d che deve solamente essere confrontata con il valore 0 ad ogni passo. Quindi:

dstart=2dy-dx

deltaNE=2dy

deltaE=2(dy-dx)

algoritmo midpoint5
Algoritmo Midpoint

Calcola dx=x1-x0;

Calcola dy=y1-y0;

Calcola dstart=2dy-dx;

Calcola deltaE=2(dy-dx);

Calcola deltaNE=2dy;

x=x0; y=y0; d=dstart;

Ripeti finché x<x1

Se d<=0 allora

d+=deltaE;

x++;

Altrimenti

d+=deltaNE;

x++;

y++;

Accendi il pixel (x,y)

midpoint per circonferenze o ellissi
Midpoint per circonferenze o ellissi

L’equazione implicita di una circonferenza F(x,y)=x2+y2-R2=0 fornisce 2 valori di y per dato x.

Si calcola il midpoint per il primo ottante x∈[0,R/√2] e poi si replica per gli altri

midpoint per circonferenze o ellissi1
Midpoint per circonferenze o ellissi

Partendo dal punto di valutazione della circonferenza P=(xp,yp) si sceglie il successivo pixel da accendere sulla base dell'analisi del punto medio

M (xp+1, yp− 1/2) tra i pixel E ed SE di P.

La variabile di decisione sarà definita come l’equazione implicita della circonferenza valutata in M.

Se F(M)>=0 // M giace o è esterno alla circonferenza

Accendi SE

Altrimenti // F(M)<0 cioè M è interno alla circonferenza

Accendi E

midpoint per circonferenze o ellissi2
Midpoint per circonferenze o ellissi

Procedendo in maniera analoga a quanto fatto per il tracciamento delle rette, si possono calcolare i due incrementi della variabile di decisione al generico passo

p+1, noto il valore dold della varibile di decisione al passo p nei due casi in cui venga acceso il pixel E o SE.

Nel caso di accensione, al passo p, di E:

mentre, nel caso di accensione di SE:

dstart si valuta nel punto (0, R) che è la sommità dell'ottante.

Per mantenere l’uso dell’aritmetica

intera, si considera h=d-1/4  hstart=1-R

h si confronta sempre con 0

midpoint per circonferenze o ellissi4
Midpoint per circonferenze o ellissi

Per un’ellissi l’algoritmo è lo stesso che per una circonferenza, a meno del valore della F(x,y). Inoltre, per ogni quadrante, si individuano due regioni separate dal punto in cui il vettore gradiente di F è inclinato a 45°. Le due regioni differiscono per i punti candidati all’accensione ad ogni passo.

filling
Filling

Il riempimento può essere relativo a poligoni o a polilinee.

Il riempimento di poligoni si effettua con l’algoritmo scan-line in cui il tracciamento dei lati è fatto con il DDA incrementale sulla x, visto che ad ogni passo la linea di scansione (cioè la y) aumenta di 1.

Si vuole riempire i punti certamente interniper cui l’algoritmo è leggermente modificato per accendere i pixel immediatamente a destra(sinistra) del lato del poligono

filling1
Filling

Linee curve chiuse possono essere riempite con il midpoint valutando ad ogni pixel pil segno di F(p) per stabilire se il pixel è interno o meno alla curva.

Questo è il flaginda usare nell’algoritmo scan-line

x=x0, num=x1-x0, den=y1-y0, delta=den;

Ripeti per y=y0;y<=y1;y++

Accendi il pixel di coordinate (x,y)

delta+=num

Se delta>den

x++;

delta-=den;

tracciamento di primitive con spessore e stile del tratto
Tracciamento di primitive con spessore e stile del tratto
  • Quando una linea deve essere tracciata con spessore non unitario si pone un problema di riempimento che deve tenere in considerazione una serie di requisiti di natura prettamente stilistica:
    • Quale forma ha il pennello: rettangolare o circolare?
    • Quale orientazione ha un pennello non circolare?
    • La linea ha sempre spessore costante?
    • Quale forma hanno le estremità della linea?
  • Le metodologie da applicare sono varie e differiscono per precisione del tratto e carico computazionale.
tracciamento di primitive con spessore e stile del tratto1
Tracciamento di primitive con spessore e stile del tratto
  • Replicazione di righe/colonne rispetto alla primitiva di spessore unitario
  • Il metodo consiste nell’aggiungere sopra e sotto (a destra e a sinistra) del pixel che viene acceso dall’algoritmo di tracciamento un numero di pixel tale da raggiungere lo spessore voluto.
    • Problemi di variazione di spessore con la pendenza
    • Problemi negli spigoli in cui si incontrano due linee (estremi condivisi) che danno origine a dei buchi
    • Linea di spessore pari: sbilanciamento tra lato destro e sinistro
    • Nel caso di un arco di circonferenza si nota che questo tende ad assottigliarsi nelle zone con pendenza della tangente |m|≃1. Lo spessore t della primitiva, in queste regioni si riduce a t/√2.
tracciamento di primitive con spessore e stile del tratto3
Tracciamento di primitive con spessore e stile del tratto
  • Uso di un pennino mobile
  • In questo metodo, il centro dell'impronta del pennino si muove lungo la traiettoria teorica. L'impronta si sposta di conseguenza.
  • Si possono pensare tracce di pennino di forma qualunque, ma si deve tener conto del problema che il pennino, quando il suo centro si sposta di un pixel, ha una parte della traccia che copre una zona bianca del disegno ed un’altra che, invece, ripassa sopra zone che erano già state accese.
    • Si utilizzano delle strutture dati simili alle tabelle ET e AET per calcolare in anticipo quali siano le nuove linee di scansione prese in considerazione dalla traccia del pennino, quando questo si sposta: queste saranno le uniche linee soggette a riempimento.
    • L’approccio va bene per le rette, ma, nelle circonferenze o nelle ellissi, i tratti non orizzontali e non verticali risultano ispessiti.
tracciamento di primitive con spessore e stile del tratto6
Tracciamento di primitive con spessore e stile del tratto

Riempimento dello spazio tra due primitive di spessore unitario distanti tra loro quanto lo spessore t voluto

Con questa tecnica si tracciano due primitive di spessore unitario a distanza t/2 dalla ideale linea mediana. Non ci sono problemi di spessori pari o dispari e lo spessore non cambia con la pendenza.

Per le rette si tracciano rettangoli di lunghezza l e larghezza t che vengono riempiti come al solito.

Per le circonferenze si tracciano due cerchi concentrici di raggio R+ t/2 e R - t/2. Analogamente per le ellissi due primitive concentriche di semiassi rispettivamente (a - t/2,b - t/2) e (a + t/2,b + t/2).

tracciamento di primitive con spessore e stile del tratto8
Tracciamento di primitive con spessore e stile del tratto
  • Tratteggio
  • Il tratteggio di una linea si può ottenere guidandone il tracciamento con una tecnica di mascheramento. Per semplicità si farà riferimento ad un segmento di retta, ma il procedimento si estende immediatamente anche ad altri tipi di linea.
  • Lo stile del tratteggio è codificato con una costante intera di 16 o 32 bit che, come maschera binaria, ha dei bit 1 in corrispondenza dei pixel del tratto da accendere e dei bit 0 in corrispondenza dei pixel da lasciare spenti.
    • “tratto e punto” in 32 bit: 11111001100111111111100110011111
tracciamento di primitive con spessore e stile del tratto9
Tracciamento di primitive con spessore e stile del tratto

Ogni bit comanda l'accensione di un tratto di linea di lunghezza data, in dipendenza di un fattore di scala alla quale vogliamo ripetere il tratto.

Sia sla scala alla quale si vuole disegnare una iterazione dello stile del tratteggio e sia t l’intero a 32 bit che codifica lo stile:

Ripeti per x=x0, i=0; x<=x1; x++, i++

Se t>>((i/s)%(32)) & 1 == 1

Accendi il pixel alla coordinata (x,y) // y determinato dall’algoritmo di

//tracciamento

clipping
Clipping
  • Il problema del clipping è intrinsecamente 3D, ma sorge anche nel 2D quando bisogna determinare l’estensione di curve proiettate sullo schermo che possono
    • Intersecarsi tra loro
    • Essere interrotte dai bordi della viewport
  • Il clipping verrà analizzato per
    • Rette
    • Poligoni
    • Curve
clipping di rette
Clipping di rette
  • Algoritmo di Cohen-Sutherland
  • Si basa sull’uso di un test per effettuare l’accettazione o la reiezione banale delle linee che siano interamente visibili o interamente invisibili rispetto a una regione rettangolare. Siano (xmin,ymin) e (xmax, ymax) i punti che definiscono la regione di visibilità, allora il piano può essere diviso in 9 regioni dalle 4 rette che la delimitano.
  • Ad ogni regione viene assegnato un codice a 4 bit che risulta dal test effettuato per i punti (x,y) di ogni regione con le 4 rette:
    • 1° bit=1 per y > ymax
    • 2° bit=1 per y < ymin
    • 3° bit=1 per x > xmax
    • 4° bit=1 per x < xmin
clipping di rette2
Clipping di rette

Ripeti

Valuta i codici dei due estremi

Se entrambi i codici sono nulli

La linea è totalmente visibile // caso AB

Altrimenti se l’AND bit a bit degli estremi è diverso da 0

La linea è totalmente invisibile // caso CD: si tratta di

// linee che sono tutte in una

// delle 4 regioni definite dai // bit del codice perché gli

// estremi hanno un bit 1 nella

// stessa posizione)

Altrimenti

Si considera il primo estremo con codice diverso da 0

//caso EF e IL: se un estremo ha codice pari a 0

// allora è visibile

Si effettua l’intersezione con la retta corrispondente al

primo bit 1 del codice // punto H in EF e punto M in IL

Si considera il nuovo segmento che va dal punto

intersezione al secondo estremo e si calcola il nuovo

codice per l’intersezione

Finché non ricadi in uno dei due casi banali

clipping di rette3
Clipping di rette

Algoritmo di Cyrus-Beck

E’ il caso bidimensionale dell’intersezione retta-poligono in 3D

Per ogni lato della viewport si considera una geometria semplificata

clipping di rette4
Clipping di rette

Algoritmo di Cyrus-Beck

clipping di rette5
Clipping di rette

Ripeti per ogni segmento che deve essere troncato

Se P1== P0 esci // linea degenere

Altrimenti tE=0, tL=1 // gli estremi del segmento: non

// ha senso andare oltre

Ripeti per ogni lato da intersecare

Calcola numeratore e denominatore di t

Se −Ni⋅D== 0 // linea parallela al lato di clipping

Se Ni⋅[P0− PEi]>0 // lato esterno

//segmento parallelo ed esterno

Esci

Altrimenti

restituisci gli estremi P0 e P1

Altrimenti se −Ni⋅D> 0

tE=max(t ,tE)

Altrimenti

tL=min(t ,tL)

Se tE > tL esci // falso positivo: un punto potenzialmente // entrante è successivo ad un punto potenzialmente

// uscente, quindi la linea è esterna

Altrimenti

restituisci gli estremi corrispondenti a tE e tL

clipping di rette6
Clipping di rette
  • Liang-Barsky
    • Algoritmo semplificato
      • Tiene conto delle reali orientazioni delle normali Ni
      • Determina delle formule semplici di calcolo di t
      • Non necessita di un posizionamento particolare per PEi
clipping di poligoni
Clipping di poligoni

Sutherland-Hodgman

Estensione del clipping di un segmento alla lista dei segmenti di un poligono

Il poligono da troncare è espresso come una lista di vertici v1,v2,...,vne viene scandito da vna v1e di nuovo a vnper ogni lato del rettangolo di clipping (o della viewport)

clipping di poligoni1
Clipping di poligoni

I test di interno/esterno e di parallelismo si possono condurre

con l’approccio di Liang-Barsky

clipping di poligoni2
Clipping di Poligoni

Ripeti per ogni lato del rettangolo di clipping

listaout=null

s=listain(lunghezza(listain)) Ripeti per l che va da 1 a lunghezza(listain)

p=listain(l)

Se s è esterno al lato

Se p è interno

Calcola

l’intersezione i

listaout=listaout+i

listaout=listaout+p

Altrimenti

Se p è interno

listaout=listaout+p

Se p è esterno

Calcola

l’intersezione i

listaout=listaout+i

s=p

Fine

listain=listaout

Fine

clipping di circonferenze o ellissi
Clipping di circonferenze o ellissi
  • Si effettua una serie di test semplici di accettazione e reiezione rispetto ai lati di clipping
    • Con il rettangolo includente
    • Con ogni suo quadrante
    • Con ogni singolo ottante
  • I test sono dei clipping poligonali
  • L’intersezione è calcolata solo per i lati di interesse
antialiasing
Antialiasing

Per effetto della dimensione finita (e non infinitesima) dei pixel dei sensori di acquisizione e dei display, è possibile riprodurre le immagini inseguendo solo fino ad un certo punto le brusche variazioni di luminosità e/o colore, cioè le elevate frequenze spaziali.

Come conseguenza di questa limitazione, i profili degli oggetti disegnati in un’immagine presentano delle “seghettature”: a questo fenomeno si da il nome di aliasinged è una caratteristica tipica della digitalizzazione di qualunque segnale analogico, anche temporale, nel momento in cui vengono fissati i parametri di campionamento.

antialiasing1
Antialiasing

Approccio Unweighted Area Sampling (UAS)

Si pensi al display come ad una disposizione regolare di tessere quadrate o rettangolari. Anche la retta (linea) più sottile, ha un suo spessore ≠ 0 e quindi possiamo pensarla come un rettangolo pieno (o come una striscia curvilinea).

antialiasing2
Antialiasing

L'idea dell'antialiasing di tipo UAS è quella di accendere tutti i pixel interessati anche marginalmente dal rettangolo che rappresenta analiticamente il segmento di retta di dato spessore o, più in generale, la striscia che rappresenta la generica linea curva.

In questo approccio, i pixel vengono accesi con un'intensità "proporzionale" alla porzione della loro area che è interessata dalla linea. Così, da un punto di vista percettivo, inganna l'occhio e fa percepire contorni continui e non seghettati.

Analogamente si può dire che, più distante è il centro del pixel dalla linea, minore è l'intensità con cui viene acceso: il pixel sarà spento se è completamente esterno alla linea.

antialiasing3
Antialiasing

La tecnica UAS non è apprezzabile da un punto di vista percettivo perché gli estremi della primitiva tendono a “sbordare” in quanto pixel molto distanti dal centro della linea, ma con una piccola sovrapposizione con essa risultano accesi.

antialiasing4
Antialiasing

Approccio Weighted Area Sampling (WAS)

Si sopperisce ai difetti dell’approccio UAS tenendo conto anche della distanza del centro del pixel dalla traccia teorica della primitiva, pensata come priva di spessore.

Le due tecniche UAS e WAS sono delle vere e proprie tecniche di filtraggio dell’immagine e possono essere spiegate ricorrendo al concetto di filtraggio spaziale tramite convoluzione di un opportuno nucleo con ogni singolo pixel e non con un vicinato.

antialiasing5
Antialiasing

Sia Imax l’intensità massima di accensione di un pixel in assenza di antialiasing.

Sia L⊂R2 l’insieme dei punti della primitiva. Ogni pixel che ha intersezione non vuota con L sarà acceso con un’intensità I=Imax*Ws ottenuto come filtraggio con un opportuno nucleo di convoluzione W(τ,ν) centrato nel pixel p(xp,yp) con una funzione dA(x,y) che esprime l’area ricoperta dalla primitiva.

Per una scelta opportuna del nucleo di convoluzione, le tecniche UAS e WAS sono casi particolari del medesimo approccio.

antialiasing6
Antialiasing

Con la modalità WAS, a differenza della UAS, aree di pixel ugualmente interessate dalla primitiva non sonoin generale accese con la stessa intensità. I pixel i cui centri sono più vicini al confine teorico della primitiva sono accesi più intensamente degli altri, a parità della porzione di area interessata.

Le estremità della linea, che sono pixel parzialmente coperti, ma con il centro vicino o interno alla linea stessa, sono accese più intensamente che nel UAS e forniscono una impressione visiva di terminazione netta.

antialiasing7
Antialiasing

Algoritmo di Goupta-Sproull

L’algoritmo di Goupta e Sproull si integra con il midpoint per la conversione di linee di qualunque spessore con antialiasing.

Questo approccio è ancora basato sull’uso di una tabella ℑ(D,t) di valori precalcolatidi applicazione del filtro di antialiasing per diversi valori della distanza D del pixel dal centro della primitiva e per diversi valori dello spessore t della linea.

antialiasing8
Antialiasing

Il problema si riduce semplicemente a modificare l’algoritmo midpoint per calcolare, dato lo spessore della linea, la distanza dal suo centro del pixel da accendere e di tutti i suoi vicini in riga o colonna che ne sono comunque toccati.

In quanto segue si farà riferimento a dei filtri con supporto circolare di raggio R=1. In queste condizioni, una linea di spessore unitario attraversa tipicamente 3 pixel per colonna (|m|<1) con un minimo di 2 ed un massimo di 5.