1 / 14

§2.2 行列式的应用

§2.2 行列式的应用. 行列式作为一中运算工具,在很多方面都有广泛的应用. 若把行初等变换施于 n 阶矩阵 A 上:. (1) 将 A 的某一行乘以数 k 得到 A 1 ,则 det A 1 = k (det A ) ; (2) 将 A 的某一行的 k (≠0) 倍加到另一行得到 A 2 , 则 det A 2 = det A ; (3) 交换 A 的两行得到 A 3 , 则 det A 3 = - det A. 证. (1) 按乘以数 k 的那一行展开,即得结论成立。. (2). 例 1 奇数阶反对称阵的行列式必为零.

deana
Download Presentation

§2.2 行列式的应用

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. §2.2行列式的应用 行列式作为一中运算工具,在很多方面都有广泛的应用

  2. 若把行初等变换施于n阶矩阵A上: (1) 将A的某一行乘以数k得到A1,则 detA1 = k(detA); (2) 将A的某一行的k(≠0)倍加到另一行得到A2 ,则 detA2 = detA; (3) 交换A的两行得到A3, 则detA3 = - detA. 证 (1)按乘以数k的那一行展开,即得结论成立。

  3. (2)

  4. 例1奇数阶反对称阵的行列式必为零. 证Ann (n为奇数)满足:

  5. 1 伴随矩阵 定义6 (伴随矩阵)

  6. 定理1 证:

  7. 引理 1 设L有如下分块形式的(n+m)阶矩阵: 证明:略 引理 2 设A、B皆为n阶矩阵,则有 证明:略

  8. 定理2(方阵可逆的充要条件) 证:

  9. 例 2 判定下列方阵是否可逆,若可逆,求其逆矩阵 解

  10. 推论 证:

  11. 例3

  12. 例4 证:

  13. 例 5

  14. 例6设 解 = n!

More Related