1 / 12

3. Gamma distribution

3. Gamma distribution. ∞ β -1 -x 0. For all β > 0 Γ ( β ) = ∫ x e dx (5.30) Γ ( β ) = ( β - 1) Γ ( β -1) (5.31) If β is an integer, then using Γ (1) = 1, Γ ( β ) = ( β - 1)! (5.32) f(x) = ( βθ x) e ,x>0 (5.33)

Download Presentation

3. Gamma distribution

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3. Gamma distribution

  2. β-1 -x 0 • For all β > 0 Γ(β) =∫ x e dx (5.30) • Γ(β) = (β - 1)Γ(β-1) (5.31) • If β is an integer, then using Γ(1) = 1, Γ(β) = (β - 1)! (5.32) • f(x) = (βθx) e ,x>0 (5.33) 0, otherwise { βθβ-1 - βθx Γ(β)

  3. 1 θ 1 βθ • E(X) = (5.34) • V(X) = (5.35) • F(x) = 1 - ∫(βθt) e dt, x>0 0, x<0 (5.36) • X = X + X + … + X (5.37) • g(x) = (βθ)e , x>0 0, otherwise 2 ∞ βθβ-1 -βθt x Γ(β) { 1 2 β { -βθxj

  4. Erlang distribution

  5. Erlang distribution • Erlang was a Danish telephone engineer who was an early developer of queueing theory. • About Erlang distribution: • 假設有連續k個站,而顧客必須通過這些站來完成服務。 • 一個新的顧客不能進入第一個站,必須等到正在服務中的顧客順利通過所有的站。 • 每一站的服務時間是依一個參數kθ呈指數分佈。

  6. Erlang distribution • E(X) = 1/θ • V(X) = 1/βθ2 • 根據β的值決定gamma的中間值以及變動程度 • 然而當β = k (k為一整數)時, X = X1 + X2 + ‧‧‧+ Xk

  7. Erlang distribution • E(X) = E(X1) + E(X2) + ‧‧‧+E(Xk) • E(X) = 1/kθ + 1/kθ+ ‧‧‧+ 1/kθ=1/θ • V(X) = 1/(kθ)2 + 1/(kθ)2 + ‧‧‧+ 1/(kθ)2 =1/kθ 2 • k為一整數的情況下5.36的方程式便會變成5.38

  8. EXAMPLE 5.19 • 一個大學教授整個暑假不在家,為了防止竊賊而必須整天開燈。 • 他裝了一個裝置可以切換兩個燈泡以防止第一個燈泡故障。 • 平均一個燈泡可以用1000小時。 • 教授有90天(2160小時)不在家。 • 教授回來時燈炮還亮著的機率?

  9. EXAMPLE 5.19(續) • R(X) = 1 – F(X) (亮 = 1- 不亮) • β = k = 2 (2個燈泡) • kθ=1/1000 →θ=1/2000 • X = 2160 • F(2160) = 0.636 → R(X) = 36%

  10. EXAMPLE 5.20 • 一個病患在做健康檢查時必須通過3個檢驗站。 • 每個站平均要花20分鐘。 • 在50分鐘內完成檢查的機率是多少?

  11. EXAMPLE 5.20(續) • k = 3 • kθ = 1/20 → θ = 1/60 • F(50) = 0.457 = 45.7% • E(X) = 1/θ = 60min • V(X) = 1/kθ2 = 1200min2 • mode = k-1/kθ(Erlang distribution) • mode = 3-1/3(1/60) = 40min

More Related