1 / 10

Glycolysis

Glycolysis. . C 6 H 12 O 6. +. 6O 2. ATP. +. 6H 2 O. +. 6CO 2. Overview of cellular respiration. 4 metabolic stages Anaerobic respiration 1. Glycolysis respiration without O 2 in cytosol Aerobic respiration respiration using O 2 in mitochondria 2. Pyruvate oxidation

dawn
Download Presentation

Glycolysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Glycolysis

  2. C6H12O6 + 6O2 ATP + 6H2O + 6CO2 Overview of cellular respiration • 4 metabolic stages • Anaerobic respiration 1. Glycolysis • respiration without O2 • in cytosol • Aerobic respiration • respiration using O2 • in mitochondria 2. Pyruvate oxidation 3. Krebs cycle 4. Electron transport chain (+ heat)

  3. glucose      pyruvate 6C 3C 2x Glycolysis • Breaking down glucose • “glyco – lysis” (splitting sugar) • ancient • where energy transfer first evolved • transfer energy from organic molecules to ATP • still is starting point for ALL cellular respiration • but it’s inefficient • generate only2 ATP for every 1 glucose • occurs in cytosol

  4. enzyme enzyme enzyme enzyme enzyme enzyme enzyme enzyme ATP ATP 4 2 4 2 2 ADP NAD+ ADP 2Pi 2 2H 2Pi Overview glucose C-C-C-C-C-C 10 reactions • convert glucose (6C)to 2 pyruvate (3C) • produces:4 ATP & 2 NADH • consumes:2 ATP • net yield:2 ATP & 2 NADH fructose-1,6bP P-C-C-C-C-C-C-P DHAP P-C-C-C G3P C-C-C-P pyruvate C-C-C DHAP = dihydroxyacetone phosphate G3P = glyceraldehyde-3-phosphate

  5. Glycolysis summary endergonic invest some ATP ENERGY INVESTMENT -2 ATP G3P C-C-C-P exergonic harvest a little ATP & a little NADH ENERGY PAYOFF 4 ATP • net yield • 2 ATP • 2 NADH NET YIELD

  6. 1st half of glycolysis (5 reactions) CH2OH Glucose “priming” O Glucose 1 ATP hexokinase • get glucose ready to split • phosphorylate glucose (hexokinase) • molecular rearrangement • split destabilized glucose (1 DHAP, 1 G3P) ADP CH2 O P O Glucose 6-phosphate 2 phosphoglucose isomerase CH2 P O CH2OH O Fructose 6-phosphate 3 ATP phosphofructokinase P O CH2 CH2 O P O ADP Fructose 1,6-bisphosphate aldolase 4,5 H O CH2 P isomerase C O C O Dihydroxyacetone phosphate Glyceraldehyde 3 -phosphate (G3P) CHOH CH2OH CH2 O P NAD+ Pi NAD+ Pi 6 glyceraldehyde 3-phosphate dehydrogenase NADH NADH P O O CHOH 1,3-Bisphosphoglycerate (BPG) 1,3-Bisphosphoglycerate (BPG) CH2 O P

  7. 2nd half of glycolysis (5 reactions) DHAP P-C-C-C G3P C-C-C-P Energy Harvest • NADH production • G3P donates H • oxidizes the sugar • reduces NAD+ • NAD+ NADH • ATP production • G3P    pyruvate • PEP sugar donates P • “substrate level phosphorylation” • ADP  ATP Pi Pi NAD+ NAD+ 6 NADH NADH 7 ADP ADP O- phosphoglycerate kinase C ATP ATP CHOH 3-Phosphoglycerate (3PG) 3-Phosphoglycerate (3PG) CH2 P O 8 O- phosphoglycero-mutase O C H C O P 2-Phosphoglycerate (2PG) 2-Phosphoglycerate (2PG) CH2OH O- 9 H2O H2O enolase C O O C P Phosphoenolpyruvate (PEP) Phosphoenolpyruvate (PEP) CH2 O- 10 ADP ADP C O pyruvate kinase Payola!Finally some ATP! ATP ATP C O CH3 Pyruvate Pyruvate

  8. O- 9 H2O H2O enolase C O O C P Phosphoenolpyruvate (PEP) Phosphoenolpyruvate (PEP) CH2 O- 10 ADP ADP C O pyruvate kinase ATP ATP C O CH3 Pyruvate Pyruvate Substrate-level Phosphorylation • In the last steps of glycolysis, where did the P come from to make ATP? • the sugar substrate (PEP) • P is transferred from PEP to ADP • kinase enzyme • ADP  ATP ATP I get it! The Pi camedirectly fromthe substrate!

  9. DHAP G3P NAD+ Pi NAD+ Pi NADH NADH 1,3-BPG 1,3-BPG Pi Pi NAD+ NAD+ 6 NADH NADH 7 ADP ADP ATP ATP 3-Phosphoglycerate (3PG) 3-Phosphoglycerate (3PG) 8 2-Phosphoglycerate (2PG) 2-Phosphoglycerate (2PG) 9 H2O H2O Phosphoenolpyruvate (PEP) Phosphoenolpyruvate (PEP) 10 ADP ADP ATP ATP Pyruvate Pyruvate But can’t stop there! raw materialsproducts • Going to run out of NAD+ • without regenerating NAD+,energy production would stop! • another molecule must accept H from NADH • so NAD+ is freed up for another round Glycolysis glucose + 2ADP + 2Pi + 2 NAD+2pyruvate+2ATP+2NADH

  10. recycleNADH How is NADH recycled to NAD+? without oxygen anaerobic respiration “fermentation” with oxygen aerobic respiration Another molecule must accept H from NADH pyruvate NAD+ H2O CO2 NADH NADH O2 acetaldehyde NADH acetyl-CoA NAD+ NAD+ lactate lactic acidfermentation Krebs cycle ethanol alcoholfermentation

More Related