90 likes | 182 Views
Explore benefits of tight contact spacing in neural stimulation, essential for avoiding gaps. Learn about nerve potential mapping, depolarization, hyperpolarization, and neuron firing thresholds. This model, based on Rattay's work, illustrates the importance of contact distance. Dive into the implications of tight vs. wide contact spacing and the continuous vs. discontinuous models. Discover how strategic spacing impacts neural activation. Join us for insights into improving neural stimulation methodologies.
E N D
Las Vegas, NV4-Dec-10 The Benefits of Tight Contact Spacing: Computational Model on Avoiding Stimulation Gaps Emarit Ranu MSEE MSBS, Ewan Gillespie MBA, Kerry Bradley MS Boston Scientific NeuromodulationValencia, CAUSA
Activating Function: Contact Distance (mV/cm2) • Maps the change in potential on the nerve. • A function of position relative to electrode. • Shows the level depolarization and hyperpolarization. • Any depolarization above threshold causes neurons to fire. Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Activating Function: Contact Distance (mV/cm2) • Maps the change in potential on the nerve. • A function of position relative to electrode. • Shows the level depolarization and hyperpolarization. • Any depolarization above threshold causes neurons to fire. Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Activating Function: Contact Distance (mV/cm2) • Maps the change in potential on the nerve. • A function of position relative to electrode. • Shows the level depolarization and hyperpolarization. • Any depolarization above threshold causes neurons to fire. Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Activating Function: Contact Distance (mV/cm2) • Maps the change in potential on the nerve. • A function of position relative to electrode. • Shows the level depolarization and hyperpolarization. • Any depolarization above threshold causes neurons to fire. Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Activating Function: Contact Distance (mV/cm2) • Maps the change in potential on the nerve. • A function of position relative to electrode. • Shows the level depolarization and hyperpolarization. • Any depolarization above threshold causes neurons to fire. Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Tight Contact Spacing: Rolling Cathodes Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
Wide Contact Spacing: Rolling Cathodes Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.
The Benefits of Tight Contact Spacing WideDiscontinuities TightContinuous Modeling: E. Ranu. Modeling based on: Rattay, F, “Analysis of models for extracellular fiber stimulation,” IEEE Trans Biomed Eng., Jul;36(7):676-82, 1989.