slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
第二章 热化学 PowerPoint Presentation
Download Presentation
第二章 热化学

Loading in 2 Seconds...

play fullscreen
1 / 40

第二章 热化学 - PowerPoint PPT Presentation


  • 163 Views
  • Uploaded on

§2-1 热力学的术语和基本概念 §2-2 热力学第一定律 §2-3 化学反应的热效应 §2-4 Hess 定律 §2-3 反应热的求算. 第二章 热化学. §2-1 热力学的术语和基本概念. 热力学:研究能量相互转换过程中应遵循的规律的科学。 化学热力学:研究化学变化过程中的能量转换问题(热力学第一定律);研究化学变化的方向和限度以及化学平衡和相平衡的有关问题(热力学第二定律)。 特点:着眼于宏观性质;只需知道起始状态和最终状态,无需知道变化过程的机理。. 1. 系统与环境 系统 :被研究的对象 环境 :与系统密切相关的其它部分

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about '第二章 热化学' - darius


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

§2-1 热力学的术语和基本概念

§2-2 热力学第一定律

§2-3 化学反应的热效应

§2-4 Hess定律

§2-3 反应热的求算

第二章 热化学

slide3
§2-1 热力学的术语和基本概念
  • 热力学:研究能量相互转换过程中应遵循的规律的科学。
  • 化学热力学:研究化学变化过程中的能量转换问题(热力学第一定律);研究化学变化的方向和限度以及化学平衡和相平衡的有关问题(热力学第二定律)。
  • 特点:着眼于宏观性质;只需知道起始状态和最终状态,无需知道变化过程的机理。
slide4
1.系统与环境

系统:被研究的对象

环境:与系统密切相关的其它部分

系统分类:

敞开系统 封闭系统 孤立系统

物质交换 √ × ×

能量交换 √ √ ×

slide5
2.状态与状态函数
  • 状态:由一系列表征系统性质的物理量所确定下来的系统的存在形式。
  • 状态函数:描述系统状态的物理量。T、V等
  • 状态函数分类:

容量性质:在一定条件下具有加和性。n、m等

强度性质:不具有加和性。T等

slide6
3.过程与途径
  • 过程:系统由一个状态变为另一个状态。
  • 途径:完成一个过程的具体步骤。
  • 过程分类:等压过程、等容过程、等温过程、绝热过程、循环过程等。
  • ※ 状态函数的特征 :状态函数的改变量只决定于过程的始态和终态,与变化所经历的途径无关。
slide7
4.反应进度ξ(zeta)

设有反应: νAA + νBB →νGG +νHH

t=0 n0(A) n0(B) n0(G) n0(H)

t n(A) n(B) n(G) n(H)

ξ的量纲是mol,用反应系统中任一物质来表示反应进度,同一时刻ξ值相同。

slide8
ξ≥0
  • ξ=0,表示反应开始时刻的反应进度;
  • ξ=1mol,表示有νAmolA和νBmolB 消耗掉,生成了νGmolG和νHmolH。即按νA个A粒子和νB个B粒子为一个单元,进行了6.02×1023个单元反应。当ξ=1时,我们说进行了1mol反应.或者说从反应开始时ξ=0进行到ξ=1的状态,称按计量方程进行了一个单元(位)反应
slide9
反应进度与计量式有关,例如:

合成氨的计量方程若写成:N2+3H2→2NH3,则一单元反应是指消耗了1molN2和3molH2,生成了2molNH3 ;

若计量方程写成:1/2N2+3/2H2→NH3,则一单元反应是指消耗了1/2molN2和3/2molH2 ,生成了1molNH3。

所以,在谈到反应进度时,必须指明相应的计量方程式。

slide10

§2-2 热力学第一定律

热:系统与环境之间因温度不同而引起的能量交换。用“Q”表示

规定:系统吸热 Q>0, 系统放热 Q<0

热的形式:

(1)化学反应热:反应物与生成物温度相同时系统发生化学变化时吸收或放出的热。

(2)潜热:等温等压条件下,系统发生相变时吸收或放出的热。如:蒸发热、升华热等。

(3)显热:伴随系统本身温度变化吸收或放出的热。

slide11
功:除热外,系统与环境之间传递的其它形式的能量。用符号“W”表示, 规定:系统对环境做功 W>0,环境对系统做功 W<0

功有多种形式,此处只涉及气体的体积功(因固体、液体在变化过程中△V很小)

W=F·△l

=P·S·△V/S

= P·△V(任意过程)

=△nRT(理想气体)

slide12
热力学能(内能)

热力学系统内各种形式的能量总和。

用“U”表示,单位J或kJ

“U”是状态函数,但无绝对值。状态发生变化时,△U仅取决于始态和终态。

问题:功和热是不是状态函数?

slide13

热力学第一定律

内容:能量在转化和传递过程中数量保持不变-能量守恒及转换定律。

数学表达式:U2 =U1+Q-W

△U=U2-U1=Q-W

即 △U=Q-W

(注意Q、W符号的规定)

slide14
状态函数变量的表示法与单位

当泛指一个过程时,其热力学函数的改变量可写成如△U等形式,单位是J或KJ。

若指明某一反应而没有指明反应进度,即不做严格的定量计算时,可写成△rU ,单位是J或KJ。

若某反应按所给定的反应方程式进行1mol反应时,即ξ=1mol,则写成△rUm(摩尔热力学能变)= △rU/ξ(kJ· mol-1)

slide15
例题1:某过程中系统从环境吸热100J,对环境做体积功20J。求过程中系统热力学能的改变量和环境热力学能的改变量。例题1:某过程中系统从环境吸热100J,对环境做体积功20J。求过程中系统热力学能的改变量和环境热力学能的改变量。

解:△U系 =Q-W

=100-20

=80(J)

△U环 =-△U系

=-80(J)

slide16
§2-3 化学反应的热效应

当生成物与反应物的温度相同时,化学反应过程中吸收或放出的热量,称化学反应热。

1.等容反应热 QV

由△U=QV-W

得△U=QV(∵△V=0,∴W=P·△V=0)

含义:等容过程,系统吸收的热量全部用来改变系统的热力学能。

slide17

QV

slide18
2.等压反应热与焓

△U=QP-W

QP=△U+W

=(U2-U1)+P(V2-V1)

=(U2+PV2)-(U1+PV1)

= H2-H1

(令:U+PV=H 焓)

QP =△H(焓变)[条件①等压过程②变化过程中系统不做非体积功]

slide19
含义:

1.等压反应过程中,系统吸收的热量全部用于改变体系的焓。 QP =△H

2.焓是状态函数H=U+PV,无绝对值。与U、V一样都是系统的容量性质,具有加和性。

3.理想气体的U、H只是温度的函数,温度不变,△U、△H不变。

slide20

恒 容

△H2;△U2

恒 压

△H1;△U1

反应物P1、V1、T1

产物P1、V2、T2

产物P2、V1、T2

恒 温

△H3;△U3

等压热效应与等容热效应之间的关系:

slide21

△H2=△H1+△H3 △U2=△U1+△U3

根据H=U+PV

△H1=△U1+(△PV)1;△H2=△U2+(△PV)2

△H3=△U3+(△PV)3

H,U均为状态函数,只随温度变化

恒温过程: △H3 =0;△U3=0

∴ △H1=△H2△U1=△U2

slide22

△H1=△U2+(△PV)2

△H1=△U2+△nRT

恒容变化中△U2 =Qv,恒压变化中Qp= △H1

则:

Qp =Qv + △nRT

slide23

问题:因为 Qv = U ,Qp= H,因此Q是状态函数,对吗?是不是只有等压过程才有焓?

任意过程△H=△(U+PV)=△U+△(PV)

若等压过程,有非体积功W′存在,则

△U= QP-( W+W′)

QP=△U+( W+W′)=(U2-U1)+(PV2-PV1)+ W′

QP=△H+ W′ ∴△H =QP-W′

slide24
例:在298.15K,100kPa时,反应

H2(g) + 1/2 O2(g)=H2O(l)

放热285.90kJ,计算此反应的W、△U、△H。

如同样条件下,反应在原电池中进行,做电功187.82kJ,此时Q、W、△U 、△H又为多少?(H2,O2为理想气体)。

slide25

解:Qp=-285.9KJ;△H1=Qp;

W1=P△V=△nRT=(0-1-0.5)RT=-3.718KJ

△U1=Qp-W1=-285.9-(-3.718)=-282.2KJ

同样条件下:△U2=△U1; △H2=△H1

W2=W1+W′=-3.718+187.82=184.1KJ;

△U2=Q2-W,

Q2=△U2+W=-282.2+184.1=98.1KJ

slide26
3.热化学方程式

3.1 标准状态: 温度为T,标准压力为pθ=100kPa下该物质的状态.

气体:纯理想气体;混合气体

液体或固体:

溶液和溶剂:质量摩尔浓度1mol/kg,近似于物质的量浓度1mol/L

T 一般为298.15K

slide27
表示化学反应与热效应关系的方程式

2H2(g)+O2(g)→2H2O(g) △γHm= -483.64kJ·mol-1

H2(g)+1/2O2(g)→H2O(g) △γHm= -241.82kJ·mol-1

H2(g)+1/2O2(g)→H2O(l) △γHm= -285.83kJ·mol-1

H2O(l)→H2(g)+1/2O2(g) △γHm= +285.83kJ·mol-1

C(石墨)+O2(g)→CO2(g) △γHm= -393.5kJ·mol-1

C(金刚石)+O2(g)→CO2(g)△γHm= -395.4kJ·mol-1

slide28
3.2 书写热化学方程式注意事项:

⑴ 注明温度与压强。如为298K、101325Pa可不写。

⑵ 注明聚集状态(g,l,s),固体晶形,溶液注明浓度[溶液(sln)、水溶液(aq)、无限稀释溶液(aq, ∞)]。

⑶ 同一个反应,计量系数不同,反应热数值不同。

⑷ 正、逆反应,反应热数值相同,符号相反。

slide29
3.3标准摩尔生成焓

定义:某温度下,由处于标准状态下的各种元素的最稳定的单质,生成标准状态下单位物质的量(1mol)某纯物质的热效应。

规定:标准状态下的各元素的最稳定单质*的标准摩尔生成热为零。

3 4 c h m kj mol 1
3.4标准摩尔燃烧焓△cHθm,单位kJ·mol-1

定义:在100kPa的压强下(即标准态),物质完全燃烧,生成相同温度下的指定产物时的标准摩尔焓变.

也可以表示为1mol物质完全燃烧,生成相同温度下的指定产物时的热效应。

完全燃烧产物的规定:

C→CO2(g);H2→H2O(l);S→SO2(g);N→N2(g)

S→SO2(g);Cl→HCl(aq)

slide31

§2-4 Hess(盖斯)定律

一个化学反应,不论是一步完成还是分几步完成,热效应相同。

例1 已知:

C(石墨)+O2(g)→CO2(g) △γHm⑴=-393.5kJ·mol-1

CO(g)+1/2O2(g)→CO2(g) △γHm⑵=-283.0kJ·mol-1

求: C(石墨)+1/2O2(g)→CO(g)的 △γHm⑶

slide32

解法一:设计反应循环求解

说明:外加的辅助反应,无需考虑是否能发生,只要始终态不变就行。

slide33

解法二:将已知的热化学方程式进行加减,使其结果与所求的热化学方程式相同,则反应热也进行相应的加减。解法二:将已知的热化学方程式进行加减,使其结果与所求的热化学方程式相同,则反应热也进行相应的加减。

C(石墨)+O2(g)→CO2(g) (1)

CO(g)+1/2O2(g)→CO2(g) (2)

(3) = (1)-(2)

C(石墨)+1/2O2(g)→CO(g) (3)

△γHm⑶=△γHm⑴-△γHm⑵

slide34
298K时,石墨、氢气和丙烷燃烧时的反应热如下:

C(石墨)+O2(g)→CO2(g) △γHm⑴=-393.5kJ·mol-1

H2(g)+1/2O2(g)→H2O(l) △γHm⑵=-285.83kJ·mol-1

C3H8(g)+5O2(g)→3CO2(g)+4H2O(l)

△γHm ⑶=-2220.07kJ·mol-1

求算下面反应的反应热:

3C(石墨)+4H2(g) → C3H8(g) △γHm ⑷=?

(-103.8kJ·mol-1)

slide35
注意:对有不同晶态或形态的物质来说,规定只有最稳定态的单质的标准摩尔生成热才等于零。注意:对有不同晶态或形态的物质来说,规定只有最稳定态的单质的标准摩尔生成热才等于零。

△fHθm (石墨)= 0;

△fHθm(金刚石)=1.897 kJ·mol-1

△fHθm (Br,l)=0;

△fHθm(Br,g)=30.907 kJ·mol-1

slide37

反应热△rHθm与温度有关,但受温度影响较小,所以一般温度范围内的△rHθm ,用298K的△rHθm代替即可。

判断同类型化合物的稳定性

摩尔生成热越小,(表明生成该物质时发热多或者吸热少,即该物质本身具有的热力学能少,)化合物越稳定

Na2O Ag2O

△fHθm(kJ·mol-1) -414.2 -31.0

稳定性 加热不分解 537K以上分解

slide38

△rHθm

III

生成物

反应物

II

I

各种燃烧产物

利用燃烧热求反应热的公式:

△H I = △H III + △H II,

△H III = △H I - △H II

△rHθm=∑νi△cHθm(反应物)-∑νi△cHθm(生成物)

slide39
课堂练习

1.下列纯态单质中哪些单质的△fHm°≠0 ?

⑴金刚石;⑵臭氧;⑶Br(l);⑷Fe(s);⑸Hg(g)

2.已知:

A+B→M+N;△rHm°(1)=35kJ·mol-1

2M+2N→2D;△rHm°(2)=-80kJ·mol-1

则:A+B→D的△rHm°(3)是?

a –10; b -45; c -5; d 25

3.已知298.15K、101.325Pa下,反应:

N2(g)+2O2(g)→2NO2(g); △rHm°=67.8kJ·mol-1

则NO2(g)的△fHm°是

A -67.8; b 33.9; c -33.9; d 67.8

slide40
4.已知:

2Cu2O(s)+O2(g)=4CuO △r Hm°(1)=-362kJ·mol-1

CuO(s)+Cu(s)→Cu2O(s) △r Hm°(2)=-12kJ·mol-1

在不查表的前提下,试计算CuO(s)的△f Hm°

解:Cu(s) +1/2O2(g)→CuO(s)

△f Hm°= [△r Hm°(1)+2△r Hm°(2)]/2=-193 kJ·mol-1