Tecnología y Estructura de Costos - PowerPoint PPT Presentation

daria-morrow
tecnolog a y estructura de costos n.
Skip this Video
Loading SlideShow in 5 Seconds..
Tecnología y Estructura de Costos PowerPoint Presentation
Download Presentation
Tecnología y Estructura de Costos

play fullscreen
1 / 51
Download Presentation
Tecnología y Estructura de Costos
88 Views
Download Presentation

Tecnología y Estructura de Costos

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Tecnología y Estructura de Costos

  2. Technologies • A technology is a process by which inputs are converted to an output. • E.g. labor, a computer, a projector, electricity, and software are being combined to produce this lecture.

  3. Technologies • Usually several technologies will produce the same product -- a blackboard and chalk can be used instead of a computer and a projector. • Which technology is “best”? • How do we compare technologies?

  4. Input Bundles • xi denotes the amount used of input i; i.e. the level of input i. • An input bundle is a vector of the input levels; (x1, x2, … , xn). • E.g. (x1, x2, x3) = (6, 0, 9×3).

  5. Production Functions • y denotes the output level. • The technology’s production function states the maximum amount of output possible from an input bundle.

  6. Production Functions One input, one output Output Level y = f(x) is the production function. y’ y’ = f(x’) is the maximal output level obtainable from x’ input units. x’ x Input Level

  7. Technology Sets • A production plan is an input bundle and an output level; (x1, … , xn, y). • The collection of all feasible production plans is the technology set.

  8. Technology Sets One input, one output Output Level y = f(x) is the production function. y’ y’ = f(x’) is the maximal output level obtainable from x’ input units. y” y” = f(x’) is an output level that is feasible from x’ input units. x’ x Input Level

  9. Technology Sets One input, one output Output Level y’ The technologyset y” x’ x Input Level

  10. Technology Sets One input, one output Output Level Technicallyefficient plans y’ The technologyset Technicallyinefficientplans y” x’ x Input Level

  11. Technologies with Multiple Inputs • What does a technology look like when there is more than one input? • The two input case: Input levels are x1 and x2. Output level is y. • Suppose the production function is

  12. Technologies with Multiple Inputs • E.g. the maximal output level possible from the input bundle(x1, x2) = (1, 8) is • And the maximal output level possible from (x1,x2) = (8,8) is

  13. Technologies with Multiple Inputs • The y output unit isoquant is the set of all input bundles that yield at most the same output level y.

  14. Isoquants with Two Variable Inputs x2 y º 8 y º 4 x1

  15. Technologies with Multiple Inputs • The complete collection of isoquants is the isoquant map. • The isoquant map is equivalent to the production function -- each is the other. • E.g.

  16. Technologies with Multiple Inputs x2 y x1

  17. Cobb-Douglas Technologies • A Cobb-Douglas production function is of the form • E.g.with

  18. Cobb-Douglas Technologies x2 All isoquants are hyperbolic,asymptoting to, but nevertouching any axis. x1

  19. Cobb-Douglas Technologies x2 All isoquants are hyperbolic,asymptoting to, but nevertouching any axis. x1

  20. Cobb-Douglas Technologies x2 All isoquants are hyperbolic,asymptoting to, but nevertouching any axis. x1

  21. Cobb-Douglas Technologies x2 All isoquants are hyperbolic,asymptoting to, but nevertouching any axis. > x1

  22. Fixed-Proportions Technologies • A fixed-proportions production function is of the form • E.g.with

  23. Fixed-Proportions Technologies x2 x1 = 2x2 min{x1,2x2} = 14 7 min{x1,2x2} = 8 4 2 min{x1,2x2} = 4 4 8 14 x1

  24. Perfect-Substitutes Technologies • A perfect-substitutes production function is of the form • E.g.with

  25. Perfect-Substitution Technologies x2 x1 + 3x2 = 18 x1 + 3x2 = 36 x1 + 3x2 = 48 8 6 All are linear and parallel 3 x1 9 18 24

  26. Marco de tiempo para las decisiones • Para estudiar la relación entre la decisión de producción de una empresa y sus costos, distinguimos dos marcos de tiempo para las decisiones: • El corto plazo • El largo plazo

  27. Marco de tiempo para las decisiones El corto plazo y el largo plazo El corto plazo • Es un marco de tiempo en el que las cantidades de algunos recursos productivos (o factores) son fijas, y las cantidades de los otros factores de la producción pueden variarse. El largo plazo • Es un marco de tiempo en el que las cantidades de todos los recursos de la producción pueden variar.

  28. Marco de tiempo para las decisiones El producto total • Es la cantidad total producida. El producto marginal • Es el cambio en la producción total causado al añadir una unidad de insumo variable (L) mientras todos los demás insumos permanecen constantes El producto promedio • Es el producto total dividido entre la cantidad de trabajo empleada (insumo variable).

  29. Producto total, producto marginal y producto promedio Producto Producto Producto Trabajo total marginal promedio (trabajadores (camisas (camisas por (camisas por día) por día) trabajador adicional) por trabajador) a 0 0 b 1 4 c 2 10 d 3 13 e 4 15 f 5 16

  30. Producto total, producto marginal y producto promedio Producto Producto Producto Trabajo total marginal promedio (trabajadores (camisas (camisas por (camisas por día) por día) trabajador adicional) por trabajador) a 0 0 b 1 4 c 2 10 d 3 13 e 4 15 f 5 16 4 6 3 2 1

  31. Producto total, producto marginal y producto promedio Producto Producto Producto Trabajo total marginal promedio (trabajadores (camisas (camisas por (camisas por día) por día) trabajador adicional) por trabajador) a 0 0 b 1 4 4.00 c 2 10 5.00 d 3 13 4.33 e 4 15 3.75 f 5 16 3.20 4 6 3 2 1

  32. PT f e d c b a Curva del producto total 15 No alcanzable 10 Producto (camisas por día) Alcanzable 5 0 1 2 3 4 5 Trabajo (trabajadores por día)

  33. Curva del producto marginal • El producto marginal se mide también por la pendiente de la curva del producto total. Ley de los rendimientos decrecientes Principio que afirma que más alla de cierto punto el producto marginal disminuye a medida que se agregan unidades adicionales de un factor variable a un factor fijo.

  34. Producto marginal PT 15 6 d 13 Producto marginal (camisas por día por trabajador) 4 10 Producción (camisas por día) c 3 5 2 4 PM 0 1 23 4 5 0 1 23 4 5 Trabajo (trabajadores por día) Trabajo (trabajadores por día)

  35. Marginal (Physical) Products • The marginal product of input i is the rate-of-change of the output level as the level of input i changes, holding all other input levels fixed. • That is,

  36. Marginal (Physical) Products E.g. if then the marginal product of input 1 is

  37. Marginal (Physical) Products E.g. if then the marginal product of input 1 is

  38. Marginal (Physical) Products E.g. if then the marginal product of input 1 is and the marginal product of input 2 is

  39. Marginal (Physical) Products E.g. if then the marginal product of input 1 is and the marginal product of input 2 is

  40. Marginal (Physical) Products • The marginal product of input i is diminishing if it becomes smaller as the level of input i increases. That is, if

  41. Marginal (Physical) Products E.g. if then and

  42. Marginal (Physical) Products E.g. if then and so

  43. Marginal (Physical) Products E.g. if then and so and

  44. Marginal (Physical) Products E.g. if then and so and Both marginal products are diminishing.

  45. Returns-to-Scale • Returns-to-scale describes how the output level changes as all input levels change in direct proportion (e.g. all input levels doubled, or halved).

  46. Returns-to-Scale If, for any input bundle (x1,…,xn), then the technology described by theproduction function f exhibits constantreturns-to-scale.E.g. (k = 2) doubling all input levelsdoubles the output level.

  47. Returns-to-Scale One input, one output Output Level y = f(x) 2y’ Constantreturns-to-scale y’ x’ 2x’ x Input Level

  48. Returns-to-Scale If, for any input bundle (x1,…,xn), then the technology exhibits diminishingreturns-to-scale.E.g. (k = 2) doubling all input levels less than doubles the output level.

  49. Returns-to-Scale One input, one output Output Level 2f(x’) y = f(x) f(2x’) Decreasingreturns-to-scale f(x’) x’ 2x’ x Input Level

  50. Returns-to-Scale If, for any input bundle (x1,…,xn), then the technology exhibits increasingreturns-to-scale.E.g. (k = 2) doubling all input levelsmore than doubles the output level.