1 / 40

Announcement

Announcement. Project #2 due midnight Homework #3 due Friday midnight Project #3 is out. Last class. Distance vector IP: Internet Protocol Datagram format IPv4 addressing NAT. cost to. x y z. x. 0 2 7. y. from. ∞. ∞. ∞. z. ∞. ∞. ∞. 2. 1. 7. z. x. y.

dareh
Download Presentation

Announcement

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Announcement • Project #2 due midnight • Homework #3 due Friday midnight • Project #3 is out

  2. Last class • Distance vector • IP: Internet Protocol • Datagram format • IPv4 addressing • NAT

  3. cost to x y z x 0 2 7 y from ∞ ∞ ∞ z ∞ ∞ ∞ 2 1 7 z x y Dx(z) = min{c(x,y) + Dy(z), c(x,z) + Dz(z)} = min{2+1 , 7+0} = 3 Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)} = min{2+0 , 7+1} = 2 node x table cost to cost to x y z x y z x 0 2 3 x 0 2 3 y from 2 0 1 y from 2 0 1 z 7 1 0 z 3 1 0 node y table cost to cost to cost to x y z x y z x y z x ∞ ∞ x 0 2 7 ∞ 2 0 1 x 0 2 3 y y from 2 0 1 y from from 2 0 1 z z ∞ ∞ ∞ 7 1 0 z 3 1 0 node z table cost to cost to cost to x y z x y z x y z x 0 2 7 x 0 2 3 x ∞ ∞ ∞ y y 2 0 1 from from y 2 0 1 from ∞ ∞ ∞ z z z 3 1 0 3 1 0 7 1 0 time

  4. Host, router network layer functions: • ICMP protocol • error reporting • router “signaling” • IP protocol • addressing conventions • datagram format • packet handling conventions • Routing protocols • path selection • RIP, OSPF, BGP forwarding table The Internet Network layer Transport layer: TCP, UDP Network layer Link layer physical layer

  5. IP protocol version number 32 bits total datagram length (bytes) header length (bytes) type of service head. len ver length for fragmentation/ reassembly fragment offset “type” of data flgs 16-bit identifier max number remaining hops (decremented at each router) upper layer time to live Internet checksum 32 bit source IP address 32 bit destination IP address upper layer protocol to deliver payload to E.g. timestamp, record route taken, specify list of routers to visit. Options (if any) data (variable length, typically a TCP or UDP segment) IP datagram format how much overhead with TCP? • 20 bytes of TCP • 20 bytes of IP • = 40 bytes + app layer overhead

  6. host part subnet part 11001000 0001011100010000 00000000 200.23.16.0/23 IP addressing: CIDR Before CIDR: only 8-, 16-, and 24- bit masks were available (A, B, and C class networks) CIDR:Classless InterDomain Routing • subnet portion of address of arbitrary length • address format: a.b.c.d/x, where x is # bits in subnet portion of address

  7. Overview • ICMP • IPv6 • Routing in the Internet • Hierarchical routing • RIP • OSPF • BGP

  8. used by hosts & routers to communicate network-level information error reporting: unreachable host, network, port, protocol echo request/reply (used by ping) network-layer “above” IP: ICMP msgs carried in IP datagrams ICMP message: type, code plus first 8 bytes of IP datagram causing error ICMP: Internet Control Message Protocol TypeCodedescription 0 0 echo reply (ping) 3 0 dest. network unreachable 3 1 dest host unreachable 3 2 dest protocol unreachable 3 3 dest port unreachable 3 6 dest network unknown 3 7 dest host unknown 4 0 source quench (congestion control - not used) 8 0 echo request (ping) 9 0 route advertisement 10 0 router discovery 11 0 TTL expired 12 0 bad IP header

  9. Source sends series of UDP segments to dest First has TTL =1 Second has TTL=2, etc. Unlikely port number When nth datagram arrives to nth router: Router discards datagram And sends to source an ICMP message (type 11, code 0) Message includes name of router& IP address When ICMP message arrives, source calculates RTT Traceroute does this 3 times Stopping criterion UDP segment eventually arrives at destination host Destination returns ICMP “host unreachable” packet (type 3, code 3) When source gets this ICMP, stops. Traceroute and ICMP

  10. Overview • ICMP • IPv6 • Routing in the Internet • Hierarchical routing • RIP • OSPF • BGP

  11. IPv6 • Initial motivation:32-bit address space soon to be completely allocated. • Additional motivation: • header format helps speed processing/forwarding • header changes to facilitate QoS IPv6 datagram format: • fixed-length 40 byte header • no fragmentation allowed

  12. IPv6 Header (Cont) Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same “flow.” (concept of“flow” not well defined). Next header: identify upper layer protocol for data

  13. Other Changes from IPv4 • Checksum:removed entirely to reduce processing time at each hop • Options: allowed, but outside of header, indicated by “Next Header” field • ICMPv6: new version of ICMP • additional message types, e.g. “Packet Too Big” • multicast group management functions

  14. Transition From IPv4 To IPv6 • Not all routers can be upgraded simultaneous • no “flag days” • How will the network operate with mixed IPv4 and IPv6 routers? • Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

  15. Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data Flow: X Src: A Dest: F data D C F E B A F E B A Src:B Dest: E Src:B Dest: E Tunneling tunnel Logical view: IPv6 IPv6 IPv6 IPv6 Physical view: IPv6 IPv6 IPv6 IPv6 IPv4 IPv4 A-to-B: IPv6 E-to-F: IPv6 B-to-C: IPv6 inside IPv4 B-to-C: IPv6 inside IPv4

  16. Overview • ICMP • IPv6 • Routing in the Internet • Hierarchical routing • RIP • OSPF • BGP

  17. scale: with 200 million destinations: can’t store all dest’s in routing tables! routing table exchange would swamp links! administrative autonomy internet = network of networks each network admin may want to control routing in its own network Hierarchical Routing Our routing study thus far - idealization • all routers identical • network “flat” … not true in practice

  18. aggregate routers into regions, “autonomous systems” (AS) routers in same AS run same routing protocol “intra-AS” routing protocol routers in different AS can run different intra-AS routing protocol Gateway router Direct link to router in another AS Hierarchical Routing

  19. Forwarding table is configured by both intra- and inter-AS routing algorithm Intra-AS sets entries for internal dests Inter-AS & Intra-As sets entries for external dests 3a 3b 2a AS3 AS2 1a 2c AS1 2b 3c 1b 1d 1c Inter-AS Routing algorithm Intra-AS Routing algorithm Forwarding table Interconnected ASes

  20. Suppose router in AS1 receives datagram for which dest is outside of AS1 Router should forward packet towards one of the gateway routers, but which one? AS1 needs: to learn which dests are reachable through AS2 and which through AS3 to propagate this reachability info to all routers in AS1 Job of inter-AS routing! 3a 3b 2a AS3 AS2 1a AS1 2c 2b 3c 1b 1d 1c Inter-AS tasks

  21. Example: Setting forwarding table in router 1d • Suppose AS1 learns from the inter-AS protocol that subnet x is reachable from AS3 (gateway 1c) but not from AS2. • Inter-AS protocol propagates reachability info to all internal routers. • Router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c. • Puts in forwarding table entry (x,I).

  22. Determine from forwarding table the interface I that leads to least-cost gateway. Enter (x,I) in forwarding table Use routing info from intra-AS protocol to determine costs of least-cost paths to each of the gateways Learn from inter-AS protocol that subnet x is reachable via multiple gateways Hot potato routing: Choose the gateway that has the smallest least cost Example: Choosing among multiple ASes • Now suppose AS1 learns from the inter-AS protocol that subnet x is reachable from AS3 and from AS2. • To configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x. • This is also the job on inter-AS routing protocol! • Hot potato routing: send packet towards closest of two routers.

  23. Intra-AS Routing • Also known as Interior Gateway Protocols (IGP) • Most common Intra-AS routing protocols: • RIP: Routing Information Protocol • OSPF: Open Shortest Path First • IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

  24. Overview • ICMP • IPv6 • Routing in the Internet • Hierarchical routing • RIP • OSPF • BGP

  25. u v destinationhops u 1 v 2 w 2 x 3 y 3 z 2 w x z y C A D B RIP ( Routing Information Protocol) • Distance vector algorithm • Included in BSD-UNIX Distribution in 1982 • Distance metric: # of hops (max = 15 hops) • # of hops: # of subnets traversed along the shortest path from src. router to dst. subnet (e.g., src. = A)

  26. RIP advertisements • Distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement) • Each advertisement: list of up to 25 destination nets within AS

  27. RIP: Example z w x y A D B C Destination Network Next Router Num. of hops to dest. w A 2 y B 2 z B 7 x -- 1 …. …. .... Routing table in D

  28. z w x y A D B C RIP: Example Dest Next hops w - - x - - z C 4 …. … ... Advertisement from A to D Destination Network Next Router Num. of hops to dest. w A 2 y B 2 z B A 7 5 x -- 1 …. …. .... Routing table in D

  29. RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link declared dead • routes via neighbor invalidated • new advertisements sent to neighbors • neighbors in turn send out new advertisements (if tables changed) • link failure info quickly propagates to entire net • poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

  30. routed routed RIP Table processing • RIP routing tables managed by application-level process called route-d (daemon) • advertisements sent in UDP packets, periodically repeated • RIP implemented as an app-layer protocol running over UDP Transprt (UDP) Transprt (UDP) network forwarding (IP) table network (IP) forwarding table link link physical physical

  31. Overview • ICMP • IPv6 • Routing in the Internet • Hierarchical routing • RIP • OSPF • BGP

  32. OSPF (Open Shortest Path First) • “open”: publicly available • Uses Link State algorithm • LS packet dissemination • Topology map at each node • Route computation using Dijkstra’s algorithm • Link costs configured by the network administrator • OSPF advertisement carries one entry per neighbor router • Advertisements disseminated to entire AS (via flooding) • Carried in OSPF messages directly over IP (rather than TCP or UDP

  33. OSPF “advanced” features (not in RIP) • Security: all OSPF messages authenticated (to prevent malicious intrusion) • Multiple same-cost paths allowed (only one path in RIP) • For each link, multiple cost metrics for different TOS (e.g., satellite link cost set “low” for best effort; high for real time) • Integrated uni- and multicast support: • Multicast OSPF (MOSPF) uses same topology data base as OSPF • Hierarchical OSPF in large domains.

  34. Hierarchical OSPF

  35. Hierarchical OSPF • Two-level hierarchy: local area, backbone. • Link-state advertisements only in area • each node has detailed area topology; • Area border routers:“summarize” distances to nets in own area, advertise to other Area Border routers. • Backbone routers: run OSPF routing limited to backbone. • Boundary routers: connect to other AS’s.

  36. Overview • ICMP • IPv6 • Routing in the Internet • Hierarchical routing • RIP • OSPF • BGP

  37. Internet inter-AS routing: BGP • BGP (Border Gateway Protocol):the de facto standard • BGP provides each AS a means to: • Obtain subnet reachability information from neighboring ASs. • Propagate the reachability information to all routers internal to the AS. • Determine “good” routes to subnets based on reachability information and policy. • Allows a subnet to advertise its existence to rest of the Internet: “I am here”

  38. 3a 3b 2a AS3 AS2 1a 2c AS1 2b eBGP session 3c 1b 1d 1c iBGP session BGP basics • Pairs of routers (BGP peers) exchange routing info over TCP conections: BGP sessions • Note that BGP sessions do not correspond to physical links. • When AS2 advertises a prefix to AS1, AS2 is promising it will forward any datagrams destined to that prefix towards the prefix. • AS2 can aggregate prefixes in its advertisement

  39. 3a 3b 2a AS3 AS2 1a 2c AS1 2b eBGP session 3c 1b 1d 1c iBGP session Distributing reachability info • With eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1. • 1c can then use iBGP do distribute this new prefix reach info to all routers in AS1 • 1b can then re-advertise the new reach info to AS2 over the 1b-to-2a eBGP session • When router learns about a new prefix, it creates an entry for the prefix in its forwarding table.

  40. Path attributes & BGP routes • When advertising a prefix, advert includes BGP attributes. • prefix + attributes = “route” • Two important attributes: • AS-PATH: contains the ASs through which the advert for the prefix passed: AS 67 AS 17 • NEXT-HOP: Indicates the specific internal-AS router to next-hop AS. (There may be multiple links from current AS to next-hop-AS.) • When gateway router receives route advert, uses import policy to accept/decline.

More Related