acoustic detection of high energy particle showers n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Acoustic detection of high energy particle showers PowerPoint Presentation
Download Presentation
Acoustic detection of high energy particle showers

Loading in 2 Seconds...

play fullscreen
1 / 41

Acoustic detection of high energy particle showers - PowerPoint PPT Presentation


  • 125 Views
  • Uploaded on

Acoustic detection of high energy particle showers. HU Berlin October 2003. Overview. Measurements proton beam lake Other experiments Mediterranian Bahamas Lake Baikal Future Conclusions. Motivation UHE neutrinos UHE n detection methods Acoustic detection thermoacoustic modell

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Acoustic detection of high energy particle showers' - daniel_millan


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
overview
Overview
  • Measurements
    • proton beam
    • lake
  • Other experiments
    • Mediterranian
    • Bahamas
    • Lake Baikal
  • Future
  • Conclusions
  • Motivation
    • UHE neutrinos
    • UHE n detection methods
  • Acoustic detection
    • thermoacoustic modell
    • signal expectations
  • Hardware
    • sensors
    • transmitters
    • ice preparation
motivation
Motivation

UHE cosmic rays:

Absorption by CMBR:

 GZK cutoff

Absorption length:

 no known sources

  • HiRes
  • AGASA

Options:

  • Pin down cosmic rays
  • Detect neutrinos
uhe n fluxes
UHE n fluxes
  • guaranteed:
    • cosmogenic (GZK) neutrinos
  • possible:
    • AGN (model dependant)

pCR+gsynch→X +p→n + ...

    • topological defects
    • Z-Burst (GeV g-problem)

nUHE + nCNB→Z0→qq

  • neutrino oscillations:
    • ne : nm : nt=1:2:0 → 1:1:1
uhe n detection methods
UHE n detection methods

EAS-Arrays : AGASA, AUGER

E > 1019 eV, M  ?

Satellits : OWL, EUSO

E > 1019 eV , M  10 Tera t

Radio : RICE, ANITA, SalSA, GLUE

E > 1016 eV, M  10 Giga t

Acoustic : AUTEC, SADCO (military) BAIKAL, Antares, NEMO, IceCube

E > 1017 eV, M  10 Giga t

n detection with auger
n detection with AUGER

under construction

  • technique:
    • air shower array
    • fluorescence telescopes
  • detector:
    • 1600 water cherenkov tanks
    • 3 telescopes ( 6 x 30° x 30° FOV)
  •  combine techniques
  • n shower properties:
    • CR interact at top of atmosphere
    • n also interact deep in atmosphere
  •  shower profile evolves
  •  separate young and old showers
  • only horizontal showers:
n detection with euso
n detection with EUSO

planning phase

  • technique:
    • fluorescence telescope
    • satellite based
  • detector:
    • 200.000 pixel camera
    • 2m Fresnel lens
  • advantage:
    • huge observed volume (2•1012 t)
  • problem:
    • cloud coverage
    • only horizontal showers
detection of n induced cascades with rice
Detection of n induced cascades with RICE

in operation

  • technique:
    • radio cherenkov telescope
    • frequency range (200 – 500 MHz)
  • detector:
    • 16 dipole receivers
    • spread over 200m x 200m x 200m
  • noise:
    • thermal
    • anthropogenic
  • limit:
    • 333.3 hours

AGN

AGN

AGN

TD

GZK

detection of n induced cascades with icecube
Detection of n induced cascades with IceCube
  • technique:
    • optical cherenkov telescope
  • south polar ice cap:
    • as a neutrino target
    • shielding against cosmic rays
  • detector:
    • 4800 Optical Modules
    • volume ≈ 1km3
  • problem:
    • optimized for E ≈ 10 PeV
    • for cascades Veff ≈ Vgeom

 too small for UHE neutrinos

  •  Add acoustic detection mode

under construction

IceTop

pressure sensor

piezoelectric ceramics
Piezoelectric ceramics
  • material:
    • lead zirkonium titanate

(PXE5 = PZT)

    • pervoskit structure
    • polycrystalline
  • poling:
    • heat above Tcurie ≈ 300 ˚C
    • cool in strong E-Field (E ≈ 2 MV/m)

 reorientation of

polarization domains

  • sensitivity: d33≈ 500pC/N
  • typical signal:
  • 0.1 mV @ 1 mPa

T > Tcurie

T < Tcurie

  • shapes:
    • tubes
    • disks
    • cylinders
  • resonances:
    • mode
    • frequency
calibration of piezoceramics
Calibration of piezoceramics
  • stability:
    • stable with temperature, time, …
    • manufacturing variations
  • problem:
    • input impedance of voltmeter

tdecharge= R•C ≈ 3 ms

      • charge integration
sensor design
Sensor design
  • amplifier:
    • high gain ( 80 dB )

 Uout/Uin = 10.000

    • low noise ( ≈ 8mV )
  • housing:
    • impedance matching
    • high pressure
    • resonances

housing

amplifier

piezoceramics

brass head

confirmation of thermoacoustic modell temperature variation
Confirmation of thermoacoustic modell:Temperature variation

V.I. Lyashuk, A.A. Rostovtsev et al. , ITEP Moskau

  • expansion coefficient:
    • a = ∂r(T)/ ∂t = a(T)
  • signal:
  • a > 0 : compressional wave
  • a < 0 : contractional wave
confirmation of thermoacoustic modell pressure field

x||

proton beam

Time [μs]

Confirmation of thermoacoustic modell:pressure field

V.I. Lyashuk, A.A. Rostovtsev et al. , ITEP Moskau

  • contributions:
    • A: constant energy loss

 cylindrical wave

    • B-D: bragg peak

 spherical wave

    • A-C: entrance point

 spherical wave

thermoacoustic modell

  • alternative mechanisms:
    • electrostriction
    • microbubbles

Hunter et al., J.Acoust.Soc.Am 69(6),1981

antares
ANTARES
  • Uni Erlangen:
    • 9 Persons (3 Postdoc, 1 PhD)
  • Hydrophones:
    • commercial
    • self-build (piezoceramics)
  • Transducers:
    • heating wire
    • laser
    • piezoceramics
  • Test facility:
    • temperature control
    • exact positioning
  • Simulation:
    • sensor response
    • array simulation

piezoceramics

electrodes

EM shielding

PU coating

slide32

I/I0 [-dB]

d [m]

r [km]

NEMO

G.Riccobene, INFN LNS-Catania, Roma

  • Acoustic test site:
    • cable to shore
    • junction box
  • Commercial sensors:
    • low noise
    • good directivity
  • Investigations:
    • electronics and DAQ development
    • Amplifier noise investigations
    • cascade simulation
    • sound propagation
    • Ambient noise studies
itep @ lake baikal
ITEP @ lake Baikal

V.I. Lyashuk, A.A. Rostovtsev et al. , ITEP Moskau

50 m

  • detector:
    • 9 hydrophones below ice
    • 7 scintillation detectors on ice

 EAS trigger

  • data taking:
    • March, 23 – April, 4 2003
  • noise investigations
    • depends on sun shine / temperature

 ice cracks

  • hydrophone development:
    • most sensitive hydrophones

 selected piezoceramics

Scintillation detectors

50 m

30 m

H1 (4 m)

B4 (4 m)

B3 (4 m)

G8 (9 m)

G7 (9 m)

B6 (4 m)

H2 (9 m)

H3 (14 m)

H4 (19 m)

hydrophones

autec array
AUTEC Array

Lethinen et al., Astropart. Physics 17 (2002 )279

  • Atlantic Undersea Test
  • and Evaluation Center
  • detector:
    • 52 sensors
    • frequency band 1-50 kHz
    • 4.5 m above bottom surface
    • 2.5 km grid

 250 km2 area

  • threshold:

Eth≈ 1019

saund @ autec
SAUND @ AUTEC

Justin Vandenbrouck, Stanford University

  • Study of Acoustic Ultrahigh energy Neutrino Detection
  • detector:
    • 7 hydrophones from AUTEC
  • signal source:
    • light bulbs

 position reconstruction

  • data set:
    • 208 days  25•106 events
  • investigations:
    • triggering studies
    • digital filtering studies
    • sound refraction simulation
    • sensitive volume simulation
sadco
SADCO

Igor Zheleznykh, INR, Moscow

AGAM

  • Sea Acoustic Detector of Cosmic Objects
  • detectors:
    • Kamchatka AGAM acoustic array (1500 hydrophones)
    • portable submarine antenna MG-10M (132 hydrophones)

 deploy from oil platform

  • simulation:
    • shower (including LPM)
    • signals
    • absorption

MG-10M

current status and activities
Current status and activities
  • Theory:
    • seems to work

 detailed verification

  • Simulation:
    • UHE cascade simulation
    • sound generation
    • sound propagation

 media properties

    • sensor response
  • Existing arrays:
    • sufficient size and number of sensors
    • spacing to large
    • hydrophones not optimized
    • restrictions due to military use
  • New arrays:
    • commercial hydrophones too expensive

 development of cheap sensors

 future plans

conclusions
Conclusions
  • need for UHE neutrino detection
    • establish new technique
  • thermoacoustic sound wave generation exists
    • verify details
  • developed low price sensitive detectors 
    • can be improved
  • various approaches for different experiments 
    • combine international efforts
  • show feasibility of acoustic neutrino detection