acoustic detection of high energy particle showers n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Acoustic detection of high energy particle showers PowerPoint Presentation
Download Presentation
Acoustic detection of high energy particle showers

Loading in 2 Seconds...

play fullscreen
1 / 41

Acoustic detection of high energy particle showers - PowerPoint PPT Presentation


  • 129 Views
  • Uploaded on

Acoustic detection of high energy particle showers. HU Berlin October 2003. Overview. Measurements proton beam lake Other experiments Mediterranian Bahamas Lake Baikal Future Conclusions. Motivation UHE neutrinos UHE n detection methods Acoustic detection thermoacoustic modell

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

Acoustic detection of high energy particle showers


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
overview
Overview
  • Measurements
    • proton beam
    • lake
  • Other experiments
    • Mediterranian
    • Bahamas
    • Lake Baikal
  • Future
  • Conclusions
  • Motivation
    • UHE neutrinos
    • UHE n detection methods
  • Acoustic detection
    • thermoacoustic modell
    • signal expectations
  • Hardware
    • sensors
    • transmitters
    • ice preparation
motivation
Motivation

UHE cosmic rays:

Absorption by CMBR:

 GZK cutoff

Absorption length:

 no known sources

  • HiRes
  • AGASA

Options:

  • Pin down cosmic rays
  • Detect neutrinos
uhe n fluxes
UHE n fluxes
  • guaranteed:
    • cosmogenic (GZK) neutrinos
  • possible:
    • AGN (model dependant)

pCR+gsynch→X +p→n + ...

    • topological defects
    • Z-Burst (GeV g-problem)

nUHE + nCNB→Z0→qq

  • neutrino oscillations:
    • ne : nm : nt=1:2:0 → 1:1:1
uhe n detection methods
UHE n detection methods

EAS-Arrays : AGASA, AUGER

E > 1019 eV, M  ?

Satellits : OWL, EUSO

E > 1019 eV , M  10 Tera t

Radio : RICE, ANITA, SalSA, GLUE

E > 1016 eV, M  10 Giga t

Acoustic : AUTEC, SADCO (military) BAIKAL, Antares, NEMO, IceCube

E > 1017 eV, M  10 Giga t

n detection with auger
n detection with AUGER

under construction

  • technique:
    • air shower array
    • fluorescence telescopes
  • detector:
    • 1600 water cherenkov tanks
    • 3 telescopes ( 6 x 30° x 30° FOV)
  •  combine techniques
  • n shower properties:
    • CR interact at top of atmosphere
    • n also interact deep in atmosphere
  •  shower profile evolves
  •  separate young and old showers
  • only horizontal showers:
n detection with euso
n detection with EUSO

planning phase

  • technique:
    • fluorescence telescope
    • satellite based
  • detector:
    • 200.000 pixel camera
    • 2m Fresnel lens
  • advantage:
    • huge observed volume (2•1012 t)
  • problem:
    • cloud coverage
    • only horizontal showers
detection of n induced cascades with rice
Detection of n induced cascades with RICE

in operation

  • technique:
    • radio cherenkov telescope
    • frequency range (200 – 500 MHz)
  • detector:
    • 16 dipole receivers
    • spread over 200m x 200m x 200m
  • noise:
    • thermal
    • anthropogenic
  • limit:
    • 333.3 hours

AGN

AGN

AGN

TD

GZK

detection of n induced cascades with icecube
Detection of n induced cascades with IceCube
  • technique:
    • optical cherenkov telescope
  • south polar ice cap:
    • as a neutrino target
    • shielding against cosmic rays
  • detector:
    • 4800 Optical Modules
    • volume ≈ 1km3
  • problem:
    • optimized for E ≈ 10 PeV
    • for cascades Veff ≈ Vgeom

 too small for UHE neutrinos

  •  Add acoustic detection mode

under construction

IceTop

pressure sensor

piezoelectric ceramics
Piezoelectric ceramics
  • material:
    • lead zirkonium titanate

(PXE5 = PZT)

    • pervoskit structure
    • polycrystalline
  • poling:
    • heat above Tcurie ≈ 300 ˚C
    • cool in strong E-Field (E ≈ 2 MV/m)

 reorientation of

polarization domains

  • sensitivity: d33≈ 500pC/N
  • typical signal:
  • 0.1 mV @ 1 mPa

T > Tcurie

T < Tcurie

  • shapes:
    • tubes
    • disks
    • cylinders
  • resonances:
    • mode
    • frequency
calibration of piezoceramics
Calibration of piezoceramics
  • stability:
    • stable with temperature, time, …
    • manufacturing variations
  • problem:
    • input impedance of voltmeter

tdecharge= R•C ≈ 3 ms

      • charge integration
sensor design
Sensor design
  • amplifier:
    • high gain ( 80 dB )

 Uout/Uin = 10.000

    • low noise ( ≈ 8mV )
  • housing:
    • impedance matching
    • high pressure
    • resonances

housing

amplifier

piezoceramics

brass head

confirmation of thermoacoustic modell temperature variation
Confirmation of thermoacoustic modell:Temperature variation

V.I. Lyashuk, A.A. Rostovtsev et al. , ITEP Moskau

  • expansion coefficient:
    • a = ∂r(T)/ ∂t = a(T)
  • signal:
  • a > 0 : compressional wave
  • a < 0 : contractional wave
confirmation of thermoacoustic modell pressure field

x||

proton beam

Time [μs]

Confirmation of thermoacoustic modell:pressure field

V.I. Lyashuk, A.A. Rostovtsev et al. , ITEP Moskau

  • contributions:
    • A: constant energy loss

 cylindrical wave

    • B-D: bragg peak

 spherical wave

    • A-C: entrance point

 spherical wave

thermoacoustic modell

  • alternative mechanisms:
    • electrostriction
    • microbubbles

Hunter et al., J.Acoust.Soc.Am 69(6),1981

antares
ANTARES
  • Uni Erlangen:
    • 9 Persons (3 Postdoc, 1 PhD)
  • Hydrophones:
    • commercial
    • self-build (piezoceramics)
  • Transducers:
    • heating wire
    • laser
    • piezoceramics
  • Test facility:
    • temperature control
    • exact positioning
  • Simulation:
    • sensor response
    • array simulation

piezoceramics

electrodes

EM shielding

PU coating

slide32

I/I0 [-dB]

d [m]

r [km]

NEMO

G.Riccobene, INFN LNS-Catania, Roma

  • Acoustic test site:
    • cable to shore
    • junction box
  • Commercial sensors:
    • low noise
    • good directivity
  • Investigations:
    • electronics and DAQ development
    • Amplifier noise investigations
    • cascade simulation
    • sound propagation
    • Ambient noise studies
itep @ lake baikal
ITEP @ lake Baikal

V.I. Lyashuk, A.A. Rostovtsev et al. , ITEP Moskau

50 m

  • detector:
    • 9 hydrophones below ice
    • 7 scintillation detectors on ice

 EAS trigger

  • data taking:
    • March, 23 – April, 4 2003
  • noise investigations
    • depends on sun shine / temperature

 ice cracks

  • hydrophone development:
    • most sensitive hydrophones

 selected piezoceramics

Scintillation detectors

50 m

30 m

H1 (4 m)

B4 (4 m)

B3 (4 m)

G8 (9 m)

G7 (9 m)

B6 (4 m)

H2 (9 m)

H3 (14 m)

H4 (19 m)

hydrophones

autec array
AUTEC Array

Lethinen et al., Astropart. Physics 17 (2002 )279

  • Atlantic Undersea Test
  • and Evaluation Center
  • detector:
    • 52 sensors
    • frequency band 1-50 kHz
    • 4.5 m above bottom surface
    • 2.5 km grid

 250 km2 area

  • threshold:

Eth≈ 1019

saund @ autec
SAUND @ AUTEC

Justin Vandenbrouck, Stanford University

  • Study of Acoustic Ultrahigh energy Neutrino Detection
  • detector:
    • 7 hydrophones from AUTEC
  • signal source:
    • light bulbs

 position reconstruction

  • data set:
    • 208 days  25•106 events
  • investigations:
    • triggering studies
    • digital filtering studies
    • sound refraction simulation
    • sensitive volume simulation
sadco
SADCO

Igor Zheleznykh, INR, Moscow

AGAM

  • Sea Acoustic Detector of Cosmic Objects
  • detectors:
    • Kamchatka AGAM acoustic array (1500 hydrophones)
    • portable submarine antenna MG-10M (132 hydrophones)

 deploy from oil platform

  • simulation:
    • shower (including LPM)
    • signals
    • absorption

MG-10M

current status and activities
Current status and activities
  • Theory:
    • seems to work

 detailed verification

  • Simulation:
    • UHE cascade simulation
    • sound generation
    • sound propagation

 media properties

    • sensor response
  • Existing arrays:
    • sufficient size and number of sensors
    • spacing to large
    • hydrophones not optimized
    • restrictions due to military use
  • New arrays:
    • commercial hydrophones too expensive

 development of cheap sensors

 future plans

conclusions
Conclusions
  • need for UHE neutrino detection
    • establish new technique
  • thermoacoustic sound wave generation exists
    • verify details
  • developed low price sensitive detectors 
    • can be improved
  • various approaches for different experiments 
    • combine international efforts
  • show feasibility of acoustic neutrino detection