„
Download
1 / 32

Przygotowa?: Dominik ?elazny, IIAR - PowerPoint PPT Presentation


  • 134 Views
  • Uploaded on

„ Wielokryterialna optymalizacja pracy systemu wytwarzania o strukturze przepływowej – algorytm memetyczny ”. Przygotował: Dominik Żelazny, IIAR. Plan prezentacji. Opis problemu. Algorytm genetyczny. Metoda lokalnego przeszukiwania. Algorytm LS NSGA-II. Badania i testy. Uwagi końcowe.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Przygotowa?: Dominik ?elazny, IIAR' - dallon


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Przygotowa dominik elazny iiar
Wielokryterialna optymalizacja pracy systemu wytwarzania o strukturze przepływowej – algorytm memetyczny”

Przygotował:

Dominik Żelazny, IIAR


Przygotowa dominik elazny iiar

Plan prezentacji

Opis problemu.

Algorytm genetyczny.

Metoda lokalnego przeszukiwania.

Algorytm LS NSGA-II.

Badania i testy.

Uwagi końcowe.


Przygotowa dominik elazny iiar

Opis problemu

  • zbiór m maszyn M = {1, 2, …,m}

  • zbiór n niepodzielnych zadań J = {1, 2, …, n}

  • na każdej maszynie zadania wykonywane są w tej samej kolejności

  • zbiór operacji O = { (i, j) : i єM, j єJ }

  • każda operacja wykonuje się na maszynie w niezerowym czasie pij


Przygotowa dominik elazny iiar

Opis problemu

  • Poniżej przedstawiono strukturę permutacyjnego systemu przepływowego, w której S przedstawia uszeregowanie wejściowe. Natomiast M1, …, Mm poszczególne maszyny na których wykonywane jest zadanie. Każda z maszyn działa w tym wypadku w systemie FIFO, czyli First In First Out.


Przygotowa dominik elazny iiar

Opis problemu

Rozwiązanie problemu polega na znalezieniu takiego uszeregowania (permutacji π) dopuszczalnego, które zminimalizuje dwie funkcje kryterialne (CmaxiCavg)


Przygotowa dominik elazny iiar

Opis problemu

Średni czas przepływu (Cavg) wyrażony jest poniższym wzorem:

Maksymalny czas przepływu (Cmax) wyrażony jest poniższym wzorem:

Gdzie:

j = 1, …, n , i = 1, …, m


Przygotowa dominik elazny iiar

Algorytm genetyczny

Algorytmy genetyczne zalicza się go do grupy algorytmów ewolucyjnych, które powstały i zostały rozwinięte w celu znajdowania przybliżonych rozwiązań problemów optymalizacji w taki sposób, by znajdować wynik w miarę szybko i uniknąć pułapek minimów lokalnych.



Przygotowa dominik elazny iiar

Algorytm genetyczny

Sposób działania algorytmu genetycznego można przedstawić następująco:

  • określenie sposobu kodowania rzeczywistych parametrów problemu w postaci chromosomu,

  • przyjęcie postaci funkcjiprzystosowania oceniającej analizowany zestaw parametrów pod względem jakości poszukiwanego rozwiązania,

  • losowy dobór punktów startowego zestawu parametrów,

  • selekcja najlepiej przystosowanych chromosomów do nowej populacji,

  • zastosowanie na nowej populacji operatorówgenetycznych w postaci krzyżowania i mutacji,

  • sprawdzenie wartości funkcji przystosowania.


Przygotowa dominik elazny iiar

Algorytm genetyczny

Zalety działania operatorów krzyżowania i mutacji.


Zastosowany operatora krzy owania dla problemu szeregowania schemat pmx

Algorytm genetyczny

Zastosowany operatora krzyżowania dla problemu szeregowania, schemat PMX.


Przygotowa dominik elazny iiar

Algorytm genetyczny

Zastosowany operator mutacji dla problemu szeregowania, technika randomswap.


Przygotowa dominik elazny iiar

Algorytm genetyczny

Najpopularniejsze metody mutacji.


Przygotowa dominik elazny iiar

Algorytm genetyczny

Schemat tworzenia kolejnych populacji.


Przygotowa dominik elazny iiar

Algorytm genetyczny

Ewolucja nigdy nie stara się znaleźć rozwiązania optymalnego. Ona głównie szerzy udoskonalenia wśród populacji. W trakcie tego procesu, ewolucja przechodzi tajemniczą, krętą ścieżką poprzez przestrzeń poszukiwania. Czasami ścieżka ta prowadzi do ślepego zaułka (przedwczesna zbieżność). Czasami kręci się w kółko. Zdarza się, że ścieżka zaprowadzi do globalnego optimum - ale nie ma takiej gwarancji.

W związku z powyższym tworzone są algorytmy memetyczne, łączące algorytmy genetyczne z innymi metodami.


Przygotowa dominik elazny iiar

Metoda lokalnego przeszukiwania

Idea sąsiedztwa. Poniższa ilustracja przedstawia przestrzeń rozwiązań S, oraz sąsiedztwo rozwiązania x należącego do S.


Przygotowa dominik elazny iiar

Metoda lokalnego przeszukiwania

Zastosowane dla problemu szeregowania przeszukiwanie sąsiedztwa polega na losowej zamianie dwóch sąsiadujących elementów. W wypadku algorytmu LS NSGA-II oddalonych od siebie nie dalej niż o dwa miejsca.


Przygotowa dominik elazny iiar

Metoda lokalnego przeszukiwania

Po wygenerowaniu nowego rozwiązania poddawane jest ono ocenie, zgodnie z wartością funkcji kryterialnej lub wartościami kilku funkcji, i porównywane z poprzednim. Jeśli nowe rozwiązanie jest „lepsze” od poprzedniego, to w kolejnej iteracji dokonujemy przeszukiwania otoczenia nowego rozwiązania.


Przygotowa dominik elazny iiar

Algorytm LS NSGA-II

Algorytm Local Search Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) opiera się o filozofię przeszukiwania przestrzeni rozwiązań Pareto-optymalnych, zwanych również rozwiązaniami niezdominowanymi.


Przygotowa dominik elazny iiar

Algorytm LS NSGA-II

fast-nondominated-sort(P)

dla każdego p∈ P

dla każdego q∈ P

jeśli (p ≺ q) wtedy

Sp = Sp ∪ {q}

inaczej jeśli (q ≺ p) wtedy

np = np + 1

jeśli np = 0 wtedy

F1 = F1 ∪ {p}

i = 1

Dopóki Fi ≠ ∅

H = ∅

dla każdego p∈ Fi

dla każdego q∈ Sp

nq = nq – 1

jeśli nq = 0 wtedy H = H∪ {q}

i = i +1

Fi = H

jeśli p dominuje q wtedy

dołączqdoSp

jeśli pjest zdominowany przezqwtedy

zwiększ np

jeśli żadne rozwiązanie nie dominujep wtedy

pjest członkiem pierwszego frontu

dla każdego członka pzFi

zmodyfikuj każdego członka Sp

zmniejsz nqo jeden

jeśli nqjest zerem, q staje się członkiem H

obecny front utworzony jest z członków H


Przygotowa dominik elazny iiar

Algorytm LS NSGA-II

  • Estymacja gęstości poprzez obliczanie zatłoczenia otoczenia rozwiązania oraz clusteryzacja rozwiązań.











Przygotowa dominik elazny iiar

Uwagi końcowe

Interpretacja wyników w przypadku funkcji wielokryterialnej nie jest łatwa. Zsumowano więc fronty zerowe Pareto-optymalne otrzymane przez każdy z algorytmów i wyłoniono z takiego zbioru rozwiązania niezdominowane.

Jak łatwo zauważyć, algorytm LS NSGA-II zdominował wszystkie rozwiązania zaprezentowane przez ACO PF i oryginalny NSGA-II, zarazem znajdując znacznie więcej niż „rywale” rozwiązań optymalnych w sensie Pareto.