1 / 68

Forces driving host-guest complexation in solution

Forces driving host-guest complexation in solution. Giuseppe Arena. Molecular Design and Synthesis of Supramolecular Architectures, August 27-31, 2002 Kazan, Russia. Annalinda Contino Giuseppe Maccarrone Domenico Sciotto Giuseppe Spoto Alberto Torrisi Elisa Longo.

coyne
Download Presentation

Forces driving host-guest complexation in solution

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Forces driving host-guest complexation in solution Giuseppe Arena Molecular Design and Synthesis of Supramolecular Architectures, August 27-31, 2002 Kazan, Russia

  2. Annalinda Contino Giuseppe Maccarrone Domenico SciottoGiuseppe Spoto Alberto Torrisi Elisa Longo Dipartimento di Scienze Chimiche, Università di Catania, Italy Antonio MagrìValeria Zito Istituto di Biostrutture e Bioimmagini, C.N.R., Catania, Italy Alessandro CasnatiAndrea Pochini Rocco Ungaro Dipartimento di Chimica Organica e Industriale, Università di Parma, Italy Institute for Fundamental Research of Organic Chemistry, Kyushu University, Japan Yasuhiro Aoyama Kansai University, Osaka Graduate School of Chemistry, Nagoya University, Japan Osamu YamauchiAkira Odani

  3. -2.9 2 -5.6 -8 -4.2 -4 Thermodynamic parameters of complex formation of calixresorcarene with BTMA, BTMAN and TMA (T=25°C) Reaction log K DG° DH° DS° cal/mol deg Kca/mol Kcal/mol Calixresorc. + BTMA Calixresorc.-BTMA 2.7 -3.7 Calixresorc. + BTMAN Calixresorc.-BTMAN 2.5 -3.4 Calixresorc. + TMA Calixresorc.-TMA 2.3 -3.1 G. Arena, A. Contino, D. Sciotto, T. Fujimoto, Y. Aoyama, Supramol. Chem., 2000, 11, 279.

  4. van’t Hoff ? Direct Calorimetry? • ”Additional common problems have been discussed previously and include problems in data analysis, such as the assumption that a van’t Hoff plot is linear, and error propagation” • ”Therefore, caution must be used when designing experimental strategies to obtain van’t Hoff enthalpies” J. R. Horn, D. Russel, E. A. Lewis, K. P. Murphy, Biochem., 2001, 40, 1774 J. R. Horn, J. F. Brandts, K. P. Murphy, Biochem., 2002, 41,7501

  5. J. R. Horn, J. F. Brandts, K. P. Murphy, Biochem., 2002, 41,7501

  6. Temp. Coeff. Direct Cal. [UO2F]+ UO22+ + F - H 0.49 -2 (kcal/mole) Temperature coefficient vs direct calorimetry “ This further stresses the unreliability of many values of H found from the temperature coefficient of the stability constant ” S. Ahrland, Helv. Chim. Acta, 50, (1967) 306 S. Ahrland, Struct. Bonding, 5, (1968) 118 G. Arena, R. Calì, G. Maccarrone, R. Purrello, Thermochim. Acta, 155, (1989) 353.

  7. Problems  • G° for complexation may change “lessthan 0.5 kcal/mole over 120° C!”

  8.  Water-guest and water-host bonds are broken for the particles to interact This implies that: - Bonds are broken (DH>0) - Water molecules are released into the bulk of the solvent (DS>0)

  9.  By interacting the two particles loose degrees of freedom This implies that: - The resulting complex is more stiffened than the interacting particles (DS<0) - The interaction between the particles is the driving force (DH<0)

  10. M + ATP + AA [M(ATP)AA] M= Cu or Zn AA= L-Tryptophane or L-Alanine G. Arena, R. Calì, V. Cucinotta, S. Musumeci, E. Rizzarelli, S. Sammartano, J. Chem. Soc., Dalton Trans., 1983, 1271.

  11. Concerning the Thermodynamics of Molecular Recognition in Aqueous and Organic Media. Evidence for Significant Heat Capacity Effects Cp valuesfor the complexation of ATMA with substituted cyclophane hosts in borate-d. Host P M C V Cp* -100 -130 -110 -34 (cal/mole K) D.A. Stauffer, R.E. Barrans, Jr., D.A. Dougherthy, J. Org. Chem., 55, 2762 (1990).

  12. Thermodynamic Characteristics from Variable-Temperature 1H NMR Titrations and Calorimetry for the Formation of Complexes between Cyclophane and 1,4-Disubstitued Benzene Guests in Water. (T = 293°K) Calorimetric Data 1 H NMR data  G°  H°  H° TS° kcal/mol kcal/mol kcal/mol kcal/mol -6.81 -10.7±1.0 -11.8 -5.0 dimethyl p-benzene dicarboxylate p-nitrotoluene -6.01 -9.6±3.0 -8.1 -2.1 p-tolunitrile -6.01 -9.8±2.5 -8.1 -2.1 p-nitrophenol -5.86 -11.7±1.5 -10.5 -4.6 p-dimethoxybenzene -5.38 -10.2±2.5 -10.0 -4.6 p-xylene -5.33 -7.4±1.0 -7.2 -1.9 p-dicyanobenzene -5.23 -9.5±1.0 -10.3 -5.1 p-dinitrobenzene -5.22 -9.5±1.0 -9.8 -4.6 p-cresol -4.71 -9.1±1.0 -10.6 -5.9 hydroquinone -3.69 -10.5±1.0 -10.3 -6.6 D. B. Smithrud, T. B. Wyman, and F. Diederich, J. Am. Chem. Soc., 113, 5422 (1991).

  13. BTMA Benzyltrimethylammonium BTMAN p-Nitro- Benzyltrimethylammonium TMA Trimethylanilinium I II

  14. 0.0 -0.1 -0.2 obs Dd -0.3 Hp -0.4 Hm Ho CH 3 -0.5 0 1 2 3 [1]/[TMA] G. Arena, A. Casnati, A. Contino, G. Lombardo, D. Sciotto, R. Ungaro, Chem. Eur. J., 1999 , 5, 738.

  15. 0 -1 obs Dd -2 CH 3 Ho Hm Hp -3 0 1 2 [2]/[TMA]

  16. 0.0 -0.1 -0.2 obs Dd -0.3 Hp -0.4 Hm Ho -0.5 CH 2 CH 3 0 1 2 3 4 5 6 7 [1]/[BTMA]

  17. 0.0 -0.4 obs Dd Ho -0.8 Hm CH 2 Hp CH 3 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 [2]/[BTMA]

  18. 0.0 -0.1 obs -0.2 Dd -0.3 Hm Ho -0.4 CH 2 CH 3 -0.5 0 1 2 3 4 5 6 [1]/[BTMAN]

  19. 0.0 -0.4 obs Dd -0.8 Hm Ho -1.2 CH 2 CH 3 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 [2]/[BTMAN]

  20. Table. Log K values and thermodynamic parameters of complex formation of TMA, BTMA, and BTMAN with hosts 1 and 2.

  21. 1-TMA •  DG •  DH • TDS (kcal mol-1) 2-TMA 1-BTMA 1-TMA 1-BTMAN 2-BTMA 2-BTMAN 2-TMA

  22.  Host-Guest interaction is more efficient for the electron poorer BTMAN The formation of the adduct is enthalpy driven

  23. R = (CH2)2SO3Na Calixresorcinarene BTMA Benzyltrimethylammonium BTMAN p-Nitro- Benzyltrimethylammonium TMA Trimethylanilinium

  24. 0.0 -0.2 -0.4 -0.6 Ddobs -0.8 Hp Hm -1.0 Ho -1.2 CH2 CH3 0 1 2 3 4 5 6 7 8 9 [Host]/[BTMA]

  25. 0.0 -0.4 Ddobs -0.8 Hm -1.2 Ho CH2 CH3 -1.6 0 2 4 6 8 10 12 14 16 [Host]/[BTMAN]

  26. 0.0 Hm -0.4 Hp Ho -0.8 CH3 Ddobs -1.2 -1.6 -2.0 0 2 4 6 8 10 12 14 16 [Host]/[TMA]

  27. log K values and chemical shift limiting values (complex) for the complex formation of calixresorcarene with BTMA, BTMAN and TMA, determined by 1H NMR spectroscopy at 25°C. G. Arena, A. Contino D. Sciotto, T. Fujimoto, Y. Aoyama, Supramol. Chem., 1999, 2000, 11, 279.

  28. -2.9 2 -5.6 -8 -4.2 -4 Thermodynamic parameters of complex formation of calixresorcarene with BTMA, BTMAN and TMA (T=25°C) Reaction log K DG° DH° DS° cal/mol deg Kca/mol Kcal/mol Calixresorc. + BTMA Calixresorc.-BTMA 2.7 -3.7 Calixresorc. + BTMAN Calixresorc.-BTMAN 2.5 -3.4 Calixresorc. + TMA Calixresorc.-TMA 2.3 -3.1 G. Arena, A. Contino, D. Sciotto, T. Fujimoto, Y. Aoyama, Supramol. Chem., 1999, 2000, 11, 279.

  29. TMA BTMAN BTMA •  DG •  DH • TDS (kcal mol-1)

  30. -5.8 -1.0 -5.2 -2.3 Thermodynamic parameters of complex formation of TEMA with Hosts 1 and 2; pH=7 at 25°C. log K DG° DH° TDS° Reaction kcal/mol kcal/mol kcal/mol + TEMA TEMA 3.5 -4.8 1 1- 2 + TEMA TEMA 2.1 -2.9 2- 2 1 G. Arena, A. Casnati, A. Contino, F. G. Gulino, D. Sciotto, R. Ungaro, J. Chem. Soc.; Perkin 2, 419, (2000).

  31. 1 2 •  DG •  DH • TDS (kcal mol-1)

  32. 3 1 2 G. Arena, A. Contino, A. Magrì, D. Sciotto, A. Arduini, A. Pochini, A. Secchi, Supramol. Chem., 2001, 13, 379

  33. 0 -1 obs Dd -2 -3 0 1 2 3 4 5 6 7 8 [3]/[CH3CN]

  34. Thermodynamic parameters of complex formation of CH3CN and CH3NO2 with hosts 1, 2, 3. D D D Reaction log K G° H° S° kcal/mol kcal/mol cal /mol deg + CH3CN 1.2 (1) -1.6 (1) -6.6 (1) -16.5 (4) 1 1-CH3CN + CH3NO2 1.1 (1) -1.5 (1) -6.3 (1) -16.4 (3) 1 1-CH3NO2 CH3CN + 2.39 (5) -3.26 (7) -9.4 (1) -20.4 (6) 2 2-CH3CN + CH3NO2 2.18 (5) -2.97 (7) -9.0 (3) -20 (1) 2 2-CH3NO2 CH3CN + 2.30 (5) -3.09 (7) -9.3 (2) -20.8 (8) 3 3-CH3CN CH3NO2 + 2.16 (5) -2.94 (7) -9.5 (4) -22 (1) 3 3-CH3NO2 G. Arena, A. Contino, A. Magrì, D. Sciotto, A. Arduini, A. Pochini, A. Secchi, Supramol., Chem., 2001, 13, 379.

  35. 1 2 3 •  DG •  DH • TDS (kcal mol-1) 2-CH3CN 2-CH3NO2 3-CH3CN 3-CH3NO2 1-CH3CN 1-CH3NO2

  36. 1 2 3 4 5

  37. L-Ala L-Val L-Leu L-Phe L-Trp L-His

  38. 0.0 -0.2 -0.4 obs -0.6 Dd CH (Ha) 2 -0.8 CH CH (Hb) 2 -1.0 Ho Hm Hp 0 2 4 6 8 10 12 14 [2]/[Phe]

  39. 0.0 -0.4 obs -0.8 Dd H -1.2 H , H a b CH a 3 CH b 3 -1.6 0 2 4 6 8 10 12 14 [2]/[Leu]

  40. log K values for the complexes of L--amino acids with hosts 1, 2 and 4 (pD = 7.3; 25°C). aG. Arena, A. Contino, F.G. Gulino, A. Magrì, F. Sansone, D. Sciotto, R. Ungaro, Tetrahedron Letters, 40, 1597 (1999).

  41. 3 2

  42. 1 5

  43. 1 5

  44. 4 Side view Top view

  45. Thermodynamic parameters for the complexes of L--aminoacids with hosts 1, 2 and 4 at pH = 7.0.

  46. 1 2 4 2-Val 1-Val 1-His 1-Leu •  DG •  DH • TDS (kcal mol-1) 2-Phe 4-Phe 1-Phe 2-Leu

  47. L AA L-Ala L-Arg en bpm NH(py)2 Systems Studied Pt(L)(AA) Guest Host Complexes Pt(L)(AA) T. Yajima, G. Maccarrone, M. Takani, A. Contino, G. Arena, R. Takamido, M. Hanaki, Y. Funahashi, A. Odani, O. Yamauchi, submitted

More Related