A Simulator for the LWA - PowerPoint PPT Presentation

slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
A Simulator for the LWA PowerPoint Presentation
Download Presentation
A Simulator for the LWA

play fullscreen
1 / 131
A Simulator for the LWA
147 Views
Download Presentation
corine
Download Presentation

A Simulator for the LWA

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. A Simulator for the LWA Masaya Kuniyoshi (UNM)

  2. Outline 1.Station Beam Model 2.Asymmetry Station Beam 3.Station Beam Error 4.Summary

  3. (Aaron Cohen LWA Memo Series [55])

  4. 256 dipoles (Leonid Kogan LWA Memo Series [21])

  5. ( D・ u ) Ψ = j j λ 2π ( D・ S ) Φ = j j λ 。 。 = Zenith S (0,0 ) 。 。 S (10,0 ) Simulation model for a station beam 255 E(θ,φ)=ΣGaussian(θ,φ)exp(iP )exp(Ψ-Φ)+Noise j j j j=0 Gaussian(θ,φ) = individual primary beam Station beam Station beam φ[degree] φ[degree] θ[degree] θ[degree]

  6. Normalized Power Pattern θ[°] (angle form zenith)

  7. Normalized Power Pattern θ[°] (angle form zenith)

  8. Normalized Power Pattern θ[°] (angle form zenith)

  9. Normalized Power Pattern θ[°] (angle form zenith)

  10. Normalized Power Pattern θ[°] (angle form zenith)

  11. Normalized Power Pattern θ[°] (angle form zenith)

  12. Normalized Power Pattern θ[°] (angle form zenith)

  13. Normalized Power Pattern θ[°] (angle form zenith)

  14. Normalized Power Pattern θ[°] (angle form zenith)

  15. Normalized Power Pattern θ[°] (angle form zenith)

  16. Normalized Power Pattern θ[°] (angle form zenith)

  17. Normalized Power Pattern θ[°] (angle form zenith)

  18. Normalized Power Pattern θ[°] (angle form zenith)

  19. Normalized Power Pattern θ[°] (angle form zenith)

  20. Normalized Power Pattern θ[°] (angle form zenith)

  21. Normalized Power Pattern θ[°] (angle form zenith)

  22. Normalized Power Pattern θ[°] (angle form zenith)

  23. Normalized Power Pattern θ[°] (angle form zenith)

  24. Normalized Power Pattern θ[°] (angle form zenith)

  25. Normalized Power Pattern θ[°] (angle form zenith)

  26. Normalized Power Pattern θ[°] (angle form zenith)

  27. Normalized Power Pattern θ[°] (angle form zenith)

  28. Symmetry Normalized Power Pattern θ[°] (angle form zenith)

  29. Asymmetry Normalized Power Pattern θ[°] (angle form zenith)

  30. Asymmetry Normalized Power Pattern θ[°] (angle form zenith)

  31. Normalized Power Pattern 8° 9° 13° 28° θ[°] (angle form zenith)

  32. 80MHz 20MHz 50MHz Asymmetry rate HPBW left side/ HPBW right side θ[°] angle from zenith

  33. θ Dsinθ D As the angle θgoes from 0 to π/2, the value of cosθ(differentiation of sinθ) gets smaller. As a result, the beam becomes asymmetric. This effect increases as the frequency decreases.

  34. θ =-70° Zenith = 0 ° Beam pattern peak θ (degree)

  35. θ =-60 ° Zenith = 0 ° Beam pattern peak θ (degree)

  36. θ =-50 ° Zenith = 0 ° Beam pattern θ (degree)

  37. θ =-40 ° Zenith = 0 ° Beam pattern θ (degree)

  38. θ =-30 ° Zenith = 0 ° Beam pattern θ (degree)

  39. θ =-20 ° Zenith = 0 ° Beam pattern θ θ (degree)

  40. θ =-10 ° Zenith = 0 ° Beam pattern θ θ (degree)

  41. θ =0 ° Zenith = 0 ° Beam pattern θ θ (degree)

  42. θ =10 ° Zenith = 0 ° Beam pattern θ θ (degree)

  43. θ =20 ° Zenith = 0 ° Beam pattern θ θ (degree)

  44. θ =30 ° Zenith = 0 ° Beam pattern θ θ (degree)

  45. θ =40 ° Zenith = 0 ° θ

  46. θ =50 ° Zenith = 0 ° Beam pattern θ θ (degree)

  47. θ =60 ° Zenith = 0 ° Beam pattern peak θ θ (degree)

  48. θ =70 ° Zenith = 0 ° Beam pattern peak θ θ (degree)

  49. θ =-70 ° Grating lobe Zenith = 0 ° λ ・57.3≒43° d Beam pattern Grating lobe θ (degree)

  50. θ =-60 ° Grating lobe Zenith = 0 ° Beam pattern Grating lobe θ (degree)