290 likes | 363 Views
Explore the classification of igneous rocks based on elements present, silica content, feldspars, and more. Learn about key minerals like nepheline, olivine, and pyroxene, and how they influence rock formation.
E N D
Classification of Igneous Rocks • Most Abundant Elements: O, Si, Al, Fe, Ca, Mg, K, Na • Calculate Elements as Oxides (Account for O) • How Much SiO2? (Account for Si) • What Feldspars are Present? (Account for Al, Ca, Na, K) • What Else is Present? (Account for Mg, Fe)
Silica Content • Oversaturated: Excess of Silica • Quartz Present • Saturated: Just enough silica to combine with other ions • Undersaturated: Silica-deficient Minerals Present • Olivine, Nepheline, Corundum, etc. • Can’t coexist with quartz
Feldspars • Plagioclase vs. K-Spar (Ca and Na vs. K) • Relative Aluminum Content • Peraluminous: Al left over after Feldspars form • Sillimanite, garnet, corundum may be present • Peralkaline: Al insufficient to form Feldspars • Riebeckite, Aegerine, may be present
Other Ingredients • Ferromagnesian minerals heavily influenced by characteristics like water • The only difference between rocks with biotite, amphibole or pyroxene may be water content • Basis for classification of ultramafic rocks.
“Mainstream” Igneous Rocks • Ultramafic <40% SiO2 • Plutonic: Dunite Volcanic: Komatiite • Mafic 40-50% SiO2 • Plutonic: Gabbro Volcanic: Basalt • Intermediate 50-60% SiO2 • Plutonic: Diorite Volcanic: Andesite • Felsic >60% SiO2 • Plutonic: Granite Volcanic: Rhyolite
The Feldspars • Potassium Feldspars • T dependent • Microcline, Orthoclase, Sanidine • Plagioclase • Classic Example of Solid Solution • Ca vs. Na content • Perthite: exsolution texture • Anorthoclase: K, Ca, Na mixture
Potassium Feldspars • Microcline • Lowest Temperature variety • Plutonic rocks • Almost always perthitic • Orthoclase • Medium Temperatures • Volcanic and Plutonic Rocks • Sanidine • Highest Temperature • Volcanic Rocks • May Have Appreciable Na • More a function of cooling rate and pressure than temperature?
Plagioclase Feldspars • Albite (0-10% Ca): Where Na goes in metamorphic rocks, metasomatism • Oligoclase (10-30% Ca): Granitic rocks • Andesine (30-50% Ca): Intermediate rocks • Labradorite (50-70% Ca): Mafic rocks • Bytownite (70-90% Ca): Rare - too sodic for marble, too calcic for magmas • Anorthite (90-100% Ca): Impure metamorphosed limestones
Perthite and Anorthoclase • Ionic Radii (nm) • K: 0.133 • Ca 0.099 • Na 0.097 • Ca and Na substitute freely • K can fit in lattice at high T • Na can fit in K-spar lattice but not Ca • Perthite: K-spar and plagioclase separate during cooling (Exsolution) • Anorthoclase: Na-K mix, 10-40% K-spar
Foids (Feldspathoids) • Fill the “ecological niche” of feldspars when insufficient silica is available • Major Minerals: • Nepheline (Na,K)AlSiO4 • Leucite KAlSi2O6
Granite Granodiorite Tonalite Syenite Monzonite Diorite Gabbro Foid Syenite Foid Monzonite Foid Gabbro Rhyolite Dacite Dacite Trachyte Latite Andesite Basalt Phonolite Tephrite Basanite Volcanic and Plutonic Equivalents
Olivine • Like Plagioclase, a solid solution • Forsterite (Mg2SiO4) and Fayalite (Fe2SiO4) • Becomes More Fe-Rich as Magma Cools • Forsterite • Can be nearly pure in metamorphic rocks • Cannot coexist with quartz • Fayalite • Rarely found pure • Can coexist with quartz
Ortho- and Clinopyroxene • Orthopyroxene • Orthorhombic • Mixture of Enstatite (Mg2Si2O6) and Ferrosilite (Fe2Si2O6). The generic mixture is termed Hypersthene ((Mg,Fe)2Si2O6) • Clinopyroxene • Monoclinic • Mixture of Diopside (CaMgSi2O6) and Hedenbergite (CaFeSi2O6) The generic mixture is termed Augite ((Ca,Mg,Fe)2Si2O6)
Mode and Norm • Mode: What is actually present • Norm: Ideal mineral composition • Ignores water • Assumes minor components used predictably • Assumes major minerals form in predictable sequence • Purpose is to visualize rock from chemical data
CIPW Norm • Cross, Iddings, Pirrson and Washington • All Cations treated as oxides • Anions (S, F, Cl) treated as elements • Convert wt% to molecular proportions (Wt%/Mol Wt) • Allocate oxides to mineral phases
Allocate minor elements • Ba, Sr Ca; MnO FeO • CO2 Calcite (with CaO) • P2O5 Apatite (with CaO) • S Pyrite (with FeO) • TiO2 Ilmenite (with FeO) • F Fluorite (with CaO) • Cr2O3 Chromite (with FeO) • Cl Halite (With Na2O)
Start Forming Silicates • ZrO2 Zircon (with SiO2) • Form provisional Feldspars • Na2O Albite • K2O K-Spar • CaO Anorthite • With SiO2 and Al2O3 • May need to convert to foids if SiO2 runs out
Allocate FeO, MgO and CaO • Fe2O3 Acmite (With Na2O and SiO2) and Magnetite (With FeO) • FeO and MgO Hypersthene (provisional) • CaO + Hy Diopside • Excess SiO2 Quartz
If Silica Runs Out • Hypersthene Olivine • Albite Nepheline • K-Spar Leucite
Example • SiO2 83 • TiO2 2 • Al2O3 16 • Fe2O3 2 • FeO 10 • MgO 17 • CaO 17 • Na2O 5 • K2O 1
Let the Games Begin • Ilmenite: TiO2 0; FeO 10 - 2 = 8 • K-Spar: K2O 0; Al2O3 16 – 1 = 15; SiO2 83 – 6K2O = 77 • Albite: Na2O 0; Al2O3 15 – 5 = 10; SiO2 77 – 6Na2O = 47 • Anorthite: CaO 0; Al2O3 10 – 17 = -7! • Excess CaO • CaO 17-10 = 7; Al2O3 0; SiO2 47 – 2CaO = 27
Final Allocations • Magnetite: Fe2O3 0; FeO 10-2 = 8 • FeO + MgO = 8 + 17 = 25 • Diopside: CaO 0; FeO + MgO = 25 – 7 = 18; SiO2 SiO2 – 2CaO = 27-14 = 13 • Hypersthene: FeO + MgO 0; SiO2 13 – 18 = -5 (Call this -D) • Olivine: Ol = D = 5 • Hypersthene: Hy – 2D = 18 – 10 = 8
Final Result • Ilmenite: 2 • K-Spar: 1 • Albite: 5 • Anorthite: 10 • These are molecular proportions • Magnetite: 2 • Diopside: 7 • Olivine: 5 • Hypersthene: 8 • Multiply by Mol. Wt. and normalize for Wt%