aula te rica 6 7 n.
Skip this Video
Download Presentation
Aula Teórica 6&7

Loading in 2 Seconds...

play fullscreen
1 / 31

Aula Teórica 6&7 - PowerPoint PPT Presentation

  • Uploaded on

Aula Teórica 6&7. Princípio de Conservação e Teorema de Reynolds. Derivada total e derivada convectiva. Princípio de conservação. A Taxa de acumulação no interior de um volume de controlo é igual ao que entra menos o que sai mais o que se produz menos o que se destrói/consome.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about 'Aula Teórica 6&7' - colin

Download Now An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
aula te rica 6 7

AulaTeórica 6&7

Princípio de Conservação e Teorema de Reynolds.

Derivada total e derivadaconvectiva

princ pio de conserva o
Princípio de conservação
  • A Taxa de acumulação no interior de um volume de controlo é igual ao que entra menos o que sai mais o que se produz menos o que se destrói/consome.
    • A propriedade pode entrar por advecção ou por difusão.
    • Os processos de produção/consumo são específicos da propriedade (e.g. Fitoplâncton cresce por fotossíntese, o zoo consome outros organismos a quantidade de movimento é produzida por forças).
control volumne and accumulation rate
ControlVolumneandaccumulation rate

Taxa de acumulação da propriedade B: (Taxa de variação da propriedade )

Definindo a propriedade específica “Beta” :

fluxo advectivo
  • No caso de a propriedadeseruniformenas faces:
  • Se a velocidade for uniformeemcada face:
fluxo difusivo
  • No caso de o gradiente da propriedadeseruniformenas faces:
e a equa o de evolu o fica
E a equação de evoluçãofica:
  • Se as propriedadesforemuniformesnas faces e no volume (volume infinitesimal):
  • Que é a forma algébrica do princípio de conservação
dividindo pelo volume 2
Dividindopelo volume (2)

Fazendo o volume tender para zero, obtém-se umaequaçãodiferencial.

fazendo tender o volume para zero
Fazendo tender o volume para zero

Divergência da velocidade. Nula emincompressível. Se positiva o volume do fluidoaumenta.

  • The divergence of the velocity is the rate of expansion of a volume?
  • Let’s consider a volume of fluid in a flow with positive velocity divergence






Is the rate of increase of distance between faces normal to xx axis. The same for other axis.



In case of this figure the volume would increase.

  • The rate change of a property conservative property is the symmetrical of the flux divergence?

The functions being derivate are the advective flux and the diffusive flux per unit of area. The operators are divergences of the fluxes.

the diffusivity of the specific mass is zero
The diffusivity of the specific mass is zero!
  • That is a consequence of the definition of velocity.
  • Velocity was defined as the net budget of molecules displacement.
  • When molecules move they carry their own mass and consequently the advective flux accounts for the whole mass transport.
trabalho computacional
  • Casounidimensional, só com difusão:
referencial euleriano e lagrangeano
ReferencialEuleriano e Lagrangeano
  • O refencialEulerianoestudaumazona do espaço (volume de controlofixo)
  • O referencialLagrangeanoestudaumaporção de fluido “Sistema” (volume de controlo a mover-se à velocidade do fluido).
  • O Teorema de Reynolds relacionaosdoisreferenciais.
teorema de reynolds
Teorema de Reynolds
  • A taxa de variação de uma propriedade num “sistema de fluido” é igual à taxa de variação da propriedade no volume de controlo ocupado pelo fluido mais o fluxo que entra, menos o que sai:
  • (ver capítulo 3 do White)
sistema e volume de control
Sistema e Volume de Control

Control Volume

Volume that flew in

Volume that flew out

taxas de varia o
Taxas de Variação

No sistema material de fluido

No volume de controlo

No instante inicial o sistema era coincidente com o volume de controlo

A figura permite relacionar o VC em t+dt:

Fazendo o Balanço por unidade de tempo e usando a definição de propriedade específica (valor por unidade de volume)


fluxo advectivo1
Fluxo advectivo

Where v velocity relative to the surface. Is the flow velocity if the volume is at rest.

balan o integral
Balanço integral

The rate of change in the Control Volume is equal to the rate of change in the fluid (total derivative) plus what flows in minus what flows out.

volume infinitesimal
Volume infinitesimal

Dividing by the volume,

derivada total
Derivada total

Shrinking the volume to zero,


  • The velocity of an incompressible fluid in a contraction must increase and consequently the pressure must decrease

If the velocity increases the acceleration is positive and so is the applied force.

in a pipe pressure forces plus gravity forces balance friction forces
In a pipe pressure forces plus gravity forces balance friction forces
  • If we consider a control volume (e.g. with faces perpendicular and parallel to the velocity it is easy to verify that acceleration is zero and that forces have to balance.
  • Is the velocity profile a parabola?
  • Let’s consider a “annular control volume” and perform a force balance

When r is zero the velocity gradient is zero, friction is zero and thus C1 must be zero:

When r=R, velocity is zero and thus

about the flow in a pipe
About the flow in a pipe
  • The velocity profile is a parabola.
  • The shear stress is linear.
  • The velocity decreases with viscosity and increases with the radius square and linearly with the pressure gradient and the gravity.
  • Gravity action is equivalent to pressure gradient action.
  • The conservation principle drives to the advection-diffusion equation.
  • The total derivative represents the rate of change of a portion of fluid while it is moving. The local temporal derivative represents the rate of change of a property in a fixed point of the space.
  • The laws of physics apply to a portion of fluid. They are responsible for source and sink terms to be added to the advection diffusion equation that then becomes a conservation equation.
  • The relation between what happens inside a volume of fluid and what happens inside a fixed volume are the fluxes across its boundaries.
  • The convective derivative represents the contribution of the transport for what happens in a fixed point.