CCDM 竞赛回顾与总结

1 / 23

# CCDM 竞赛回顾与总结 - PowerPoint PPT Presentation

CCDM 竞赛回顾与总结. 陈文强 2014/03/26. 1. 2. 3. 目录. 第一页. 比赛基本介绍. 多标记分类任务. 多分类任务. 比赛基本介绍. 第二页. 主办单位：中国计算机学会 & 中国人工智能学会. 协办单位：中国计算机学会模式识别与人工智能专委会 中国人工智能学会机器学习专委会. 指导专家：周志华等. 评审专家： 郭茂祖 、朱军等. 比赛基本介绍. 第三页. 竞赛时间： 2014/01/05 —— 2014/03/15. 数 据 集：医学诊断数据.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'CCDM 竞赛回顾与总结' - clinton-dawson

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

CCDM竞赛回顾与总结

2014/03/26

1

2

3

02/13

02/20

02/21

02/28

02/29

03/05

03/06

03/12

03/13

03/15

1

2

3

4

5

6

jikicaxi

JHHT

FZU_BRRF

CUG_Miners

Yuri

xmu_dmlab

xmu_dmlab

jikicaxi

JHHT

CUG_Miners

Yuri

xmu_dmlab

JHHT

jikicaxi

jikicaxi

JHHT

xmu_dmlab

CUG_Miners

JHHT

xmu_dmlab

Jikicaxi

Yuri

1

2

3

AveragePrecision

Bipartition: a bipartition of the labels into relevant and irrelevant

1 0 0 1

Confidences: the probability of each label being positive

0.87 0.33 0.26 0.67

2

3

4

1

Ranking: the rank of each label, ranging from 1 to array length

Predictions

Feature

Pool

Ensemble

C1

C2

CK

ClassifierPool

Predictions

Feature

Pool

GainRatio

Ensemble

RAkEL

HOMER

MLkNN

ClassifierPool

GainRatioAttributeEval Top 120

Tsoumakas G, Katakis I, Vlahavas I. Mining multi-label data[M]//Data mining and knowledge discovery handbook.

Springer US, 2010: 667-685.

1

2

3

4

PCA:

Retain 95% variance.

F1Score

Precision =

TP

FN

FP

TN

F1-Score =

Recall =

Predictions

Feature

Pool

PCA

Gain

Ratio

Scale

Ensemble

L1

C1

C2

CK

RBM

MID

/MIQ

ClassifierPool

Cost-Sensitive

Bagging

SVMs

RF

LR

GBDT

DT

Tsoumakas G, Katakis I, Vlahavas I. Mining multi-label data[M]//Data mining and knowledge discovery handbook.

Springer US, 2010: 667-685.