application of autonomous driving technology to transit n.
Skip this Video
Loading SlideShow in 5 Seconds..
Application of Autonomous Driving Technology to Transit PowerPoint Presentation
Download Presentation
Application of Autonomous Driving Technology to Transit

Loading in 2 Seconds...

play fullscreen
1 / 63

Application of Autonomous Driving Technology to Transit - PowerPoint PPT Presentation

  • Uploaded on

Application of Autonomous Driving Technology to Transit. Washington State Transit Insurance Pool Quarterly Board Meeting, Tacoma, WA December 5, 2013 Jerome M. Lutin, Ph.D., P.E. Senior Director, Statewide & Regional Planning (retired) NJ TRANSIT.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about 'Application of Autonomous Driving Technology to Transit' - clay

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
application of autonomous driving technology to transit

Application of Autonomous Driving Technology to Transit

Washington State Transit Insurance Pool Quarterly Board Meeting, Tacoma, WA

December 5, 2013

Jerome M. Lutin, Ph.D., P.E.

Senior Director, Statewide & Regional Planning (retired)


transit and autonomous vehicle technology
Transit and Autonomous Vehicle Technology
  • Impact of Self-Driving Cars on Transit
  • Opportunities for Autonomous Driving Technology in Transit
  • Our proposal to FTA
how autonomous cars will affect the market for transit
How Autonomous Cars Will Affect The Market for Transit

Transit riders generally fall into two categories, captive and choice

  • Captive riders – cannot drive or do not have access to a car
  • Choice riders - generally do own cars, but choose transit when it can offer a faster, cheaper or more convenient trip. Choice riders can avoid congestion, use time on transit to read, work or sleep, and can avoid parking costs and hassles at their destinations.

Automation Coming in Stages

NHTSAPreliminary Policy on Automated Vehicles

Level 2 (Combined function automation)

  • Automation of at least two control functions designed to work in harmony (e.g., adaptive cruise control and lane centering) in certain driving situations.

Level 3 (Limited self-driving)

  • Vehicle controls all safety functions under certain traffic and environmental conditions.
  • Driver expected to be available for occasional control. Example: Google car

Level 4 (Full self-driving automation)

  • Vehicle controls all safety functions and monitors conditions for the entire trip.
  • Vehicle may operate while unoccupied.
Functional Capabilities of Currently Available Commercial Collision Avoidance and Driver Assist Packages for Autos
  • Adaptive cruise control
  • Adaptive headlights
  • Autonomous emergency braking
  • Blind spot detection
  • Cross traffic alert/avoidance
  • Driver fatigue/inattention alert
  • Forward collision avoidance
  • Lane departure warning
  • Lane keeping assist
  • Parking assist
  • Pedestrian detection/avoidance
  • Rear collision warning/mitigation
  • Self-parking
  • Side impact detection
these systems are reducing claims
These Systems are Reducing Claims

Vehicles rated “Superior” in front crash avoidance by the Insurance Institute for Highway Safety

  • Cadillac ATSsedan and SRXcrossover-utility vehicle
  • Mercedes-Benz C-Class sedan
  • Subaru Legacy sedan and Outback wagon
  • Volvo S60 sedan and XC60 crossover
impact of level 2 technology cars
Impact of Level 2 Technology - Cars

Key Features

  • Jam assist
  • Adaptive Cruise Control
  • Lane-keeping

Likely Impacts

  • Fewer crashes
  • Lower Stress
  • Some increase in auto commuting trips
impact of level 3 technology cars
Impact of Level 3 Technology - Cars

Key Features

  • Automatic Valet Parking
  • Limited Self-driving – freeways, pre-mapped or programmed routes, good weather

Likely Impacts

  • Significant reduction in center city parking time and cost
  • Drivers safely can do some non-driving activities
  • Increases in longer auto commuting trips
impact of level 4 technology cars
Impact of Level 4 Technology - Cars

Key Features

  • Unrestricted self-driving
  • Empty vehicle movements permitted

Likely Impacts

  • Growth in shared automated taxi services
  • Non-drivers can make low-cost individual trips
  • Time spent in motion no longer wasted – in-vehicle experience is transformed
  • Vehicle trips may exceed person trips
impact of self driving cars on transit
Impact of Self-Driving Cars on Transit
  • Self-driving cars will offer mobility to those transit captives who cannot drive, and, in conjunction with car-sharing, can offer mobility to those who do not have ready access to a car.
  • For choice riders, self-driving cars can offer amenities similar to those of transit in terms of how one can use time while traveling, to read, sleep or work.
  • According to studies, automated cars could double highway capacity. Couple that with the ability to self-park, and the transit advantage could melt away.
  • So the impact on many transit systems could be huge.
casualty and liability claims are a huge drain on the industry
Casualty and Liability Claims are a Huge Drain on the Industry
  • For the 10 year period 2002-2011, more than $4.1 Billion was spent on casualty and liability claims
  • For many self-insured transit agencies these expenses are direct “out-of-pocket”
  • Large reserves for claims must be budgeted
  • Claims experience is reflected in insurance premiums
  • There are gaps in data reporting
costs of bus crashes industry wide
Costs of Bus Crashes – Industry Wide

Tangible – reported as casualty and liability expense

  • Physical damage insurance premiums
  • Recovery of physical damage losses for public liability and property damage insurance premiums
  • Insured and uninsured public liability and property damage settlement pay outs and recoveries
  • Other corporate insurance premiums (e.g., fidelity bonds, business records insurance)
costs of bus crashes industry wide1
Costs of Bus Crashes – Industry Wide

Tangible -likely not reported as casualty and liability expense

  • Accident investigation
  • D & A testing
  • Emergency services response
  • Hearings and discipline
  • In-house legal services
  • In-house vehicle repair
  • Lost fare revenue
  • Overtime
  • Passenger and service delays
  • Sick time
  • Spare vehicles and replacements
  • Vehicle recovery
costs of bus crashes industry wide2
Costs of Bus Crashes – Industry Wide


  • Human loss and suffering
  • Media attention
  • Good will
level 2 automation potential impact for transit claims reduction
Level 2 Automation - Potential Impact for Transit – Claims Reduction
  • Adaptive Cruise Control
  • Autonomous emergency braking
  • Blind spot monitoring (for vehicles and pedestrians)
  • Driver fatigue and attentiveness monitoring
  • Lane keeping assistance
  • Obstacle detection and avoidance
  • Rear collision warning and mitigation

The Cost of Installing an Autonomous Collision Avoidance System on a Bus Could be Recovered in as Little as One Year Through Reductions in Casualty and Liability Claims

Potential for Cost Savings in Annual Claims Paid by Installing a Collision Avoidance System on NJ TRANSIT Buses
potential impact for transit level 3 automation
Potential Impact for Transit – Level 3 Automation

Key Features

  • Co-operative Adaptive Cruise Control
  • Lane keeping
  • Precision docking

Potential Impacts

  • Increased capacity in high volume bus corridors
A Capacity Bonus for NJ TRANSITExclusive Bus Lane (XBL) to New York CitySource: Port Authority of New York and New Jersey

Potential Increased Capacityof Exclusive Bus Lane (XBL) Using Cooperative Adaptive Cruise Control (CACC)(Assumes 45 toot (13.7 m) buses @ with 57 seats)

potential impact for transit level 4 automation
Potential Impact for Transit – Level 4 Automation

Key Features

  • Bus capable of fully automated operation

Potential Impacts

  • Unstaffed non-revenue operation
  • Paired or bus “train” operation possible
  • BRT systems can emulate rail in capacity at less cost
Connected Vehicle and Autonomous Driving Technology for Bus Platooning – Leader/Close-Follower Concept

Schematic – Wireless Short-Range Connections Between Busses Interface with Automated Driving and Passenger Systems Functions

opportunities for autonomous driving technology in transit recommendations
Opportunities for Autonomous Driving Technology in Transit - Recommendations
  • Institutional Response
  • Technological Response
recommendation transit institutional response
Recommendation - Transit Institutional Response
  • Promote shared-use autonomous cars as a replacement for transit on many bus routes and for service to persons with disabilities
  • Exit markets where transit load factors are too low to justify operating a transit vehicle
  • Concentrate transit resources in corridors where more traffic and parking will be too costly and too congested, and where transit can increase the people carrying capacity of a lane beyond that of a general traffic lane
recommendation transit institutional response continued
Recommendation - Transit Institutional Response- Continued
  • Focus attention on land use – work with partners to create Transit-Oriented Development that limits the need for driving and where trip-end density will provide enough riders
    • Create compact activity centers
    • Allow higher density
    • Promote mixed use development
    • Make streets pedestrian and bike friendly
    • Manage parking ratios and configuration
prepare for technological evolution and obsolescence
Prepare for Technological Evolution and Obsolescence
  • Buses last from 12 to 18 years or more
  • Computer technology becomes obsolete in 18 months to two years
  • Expect to replace components and systems several times during the life of a bus
  • Do not expect replacement parts to still be available
  • Sometimes stuff does not work as expected
need open architectures and standards
Need Open Architectures and Standards
  • Avoid problems of legacy systems and sole source procurements
  • Modular systems and components
  • Standard interfaces between systems and components
  • Multiple sources and innovation from vendors
  • “Plug and play”
federal transit administration notice of funding availability
Federal Transit Administration Notice of Funding Availability
  • Federal Register October 1, 2013
  • Seeking Research Development Demonstration & Deployment Projects – 3 Categories
    • Operational Safety
    • Resiliency
    • All Hazards Emergency Response & Recovery
  • $29 million available
  • Grants from $500k to $5 million
  • Open to anyone
  • Deadline December 2, 2013
Proposal Title: Application of Autonomous Collision Avoidance Technology to Transit Buses to Reduce Claims, Injuries and Fatalities

Submitted by

Princeton University

In association with:

American Public Transportation Association

Greater Cleveland Regional Transit Authority

Washington State Transit Insurance Pool

Jerome M. Lutin, PhD, LLC

ENDORSING/SUPPORTING ENTITIESWashington State Transit Insurance Pool On Behalf of 25 Member Agencies:

Asotin County Public Transportation Benefit Area

Ben Franklin Transit

Clallam Transit

Columbia County Public Transportation

Community Transit


Everett Transit

Grant Transit

Grays Harbor Transit

Intercity Transit

Island Transit

Jefferson Transit

Kitsap Transit

Link Transit

Mason County Transit

Pacific Transit

Pierce Transit

Pullman Transit

River Cities Transit

Skagit Transit

Spokane Transit

Twin Transit

Valley Transit

Whatcom Transit

Yakima Transit

endorsing supporting entities

California Transit Indemnity Pool On Behalf of 33 Member Agencies

Ohio Transit Risk Pool On Behalf of 10 Member Agencies

Virginia Transit Liability Pool On Behalf of 7 Member Agencies


1. Create a broad, inclusive stakeholder group of transit agencies and other members of the transit industry, and achieve a comprehensive view of the problem and potential solutions from all sides

  • representatives of transit agencies
  • risk management and insurance providers
  • consultants
  • vehicle manufacturers
  • systems developers
  • standards organizations
  • vendors
  • motor vehicle regulators
  • USDOT officials
expert technical working groups etwg s
Expert Technical Working Groups (ETWG’s)
  • Claims analysis and data collection
  • Human factors/operations/safety
  • Bus interfaces/systems/maintainability
  • Autonomous systems and controls
  • Testing and certification

2. Conduct a research assessment of why casualty and liability claims are increasing and determine the potential for automated collision avoidance systems to reduce fatalities, injuries and claims

  • historical trends
  • reasons that the costs of collisions are increasing
  • relationship between costs and types of accidents
  • link individual claims and other expenses with individual incidents
  • assemble an accurate record of the total agency cost of each collision
  • identify cost-effective autonomous collision avoidance technologies

3. ETWG’s develop functional requirements and standards to allow installation of autonomous collision avoidance technology (ACAT) and driver assist technology on new transit buses and retrofit of existing buses

  • define the capabilities and performance requirements for autonomous collision avoidance technology for buses
  • allow autonomous collision avoidance technologies to be retrofitted to buses, using competitive procurements and “plug and play” interfaces
  • balloted set of standards for autonomous collision avoidance technology and for the electromechanical and data on-board interfaces needed to host the technology

4. Develop a prototype test bed that would allow developers of innovative collision avoidance and driver assist technologies to work with transit agencies and researchers to expedite development and deployment

  • on-board test-bed network using electromechanical and data interface standards developed in Phase 3, to accommodate the installation and testing of prototype autonomous collision avoidance technologies
  • collision avoidance system simulator that can be installed on a new or retrofitted bus to test the bus’s ability to host, and autonomously respond to inputs from, a collision avoidance system
  • data logger and analyzer that will monitor multiple performance parameters of both the bus and the autonomous collision avoidance technology and produce reports that can be used to certify compliance with the performance requirements and standards
  • extensive field operational test of all three elements
contribution from greater cleveland regional transit authority gcrta
Contribution from Greater Cleveland Regional Transit Authority (GCRTA)
  • Four technical staff members, one to participate in each of four Expert Technical Working Groups for the duration of the project, representing approximately 10% time for each staff member
  • Staff time for data collection on collisions and claims, representing 10% time for two staff members for six months
  • Two buses to be used as test beds for installation and testing of autonomous collision avoidance technology for a period of approximately two years.
  • Approximately 3,600 square feet of space in our garage for two years for prototype development
  • Technical support from bus maintenance and operations staff representing approximately 50% time for two technicians
next steps
Next Steps
  • Wait to hear about FTA grant
  • If awarded, get busy!
  • If not awarded-find out why
    • Revise proposal
    • Resubmit
    • Look for alternative funding
    • Keep pressing FTA
    • Don’t give up – This is worth doing!
thank you

Thank You

Jerry Lutin