1 / 30

Ying Guo, Xibin Gu, Fangtong Zhang, Ralf I. Kaiser Department of Chemistry University of Hawai’i

Reaction Dynamics in the C( 3 P) + C 2 H 2 (X 1  g + ) System. Ying Guo, Xibin Gu, Fangtong Zhang, Ralf I. Kaiser Department of Chemistry University of Hawai’i Honolulu, HI 96822 kaiser@gold.chem.hawaii.edu http://www.chem.hawaii.edu/Bil301/welcome.html. Introduction.

Download Presentation

Ying Guo, Xibin Gu, Fangtong Zhang, Ralf I. Kaiser Department of Chemistry University of Hawai’i

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Reaction Dynamics in the C(3P) + C2H2(X1g+) System Ying Guo, Xibin Gu, Fangtong Zhang, Ralf I. Kaiser Department of Chemistry University of Hawai’i Honolulu, HI 96822 kaiser@gold.chem.hawaii.edu http://www.chem.hawaii.edu/Bil301/welcome.html

  2. Introduction Science, 274, 1508 (1996) 8.8, 28, 45 kJmol-1 c-C3H(X2B2) l-C3H(X2)

  3. Introduction relative energy, kJmol-1 l-C3(X1g+) + H2(X1g+) RG = - 124 kJmol-1

  4. Introduction Faraday Discussions 119, 27 (2001) Faraday Discussions 119, 51 (2001) l-C3(X1g+) + H2(X1g+) Mebel et al. JACS 120, 5751 (1998)  C3 formation via ISC

  5. Introduction relative energy, kJmol-1

  6. Open Questions relative energy, kJmol-1

  7. m/z 37 36 39 38 38 36 38 37 36

  8. 13

  9. C(3P) + C2D2(X1g+) c-C3D(X2B2) + D(2S) RG = - 2 kJmol-1 l-C3D(X2) + D(2S) RG = + 8 kJmol-1 l-C3(X1g+) + D2(X1g+) RG = - 126 kJmol-1 c-C3(X3A2’) + D2(X1g+) RG = - 43 kJmol-1 Ochsenfeld et al. JCP 106, 4141 (1997) Mebel et al. CPL 360, 139 (2002)

  10. m/z 37 36 39 38 38 36 38 37 36

  11. Crossed Molecular Beams Setup

  12. C(3P) + C2H2 (8 kJmol-1; m/z = 37) C3H C4H (usec)

  13. C(3P) + C2H2 (8 kJmol-1; m/z = 36) C3H C4H C3(R) C3(E) (usec)

  14. C(3P) + C2H2 (20.4 kJmol-1; m/z = 37) C3H C4H (usec)

  15. C(3P) + C2H2 (20.4 kJmol-1; m/z = 36) C3H C3H C4H C4H C3(R) C3(E) (usec)

  16. C(3P) + C2H2 (30.7 kJmol-1; m/z = 37) C3H C4H (usec)

  17. C(3P) + C2H2 (30.7 kJmol-1; m/z = 36) C3H C3H C4H C4H C3(R) C3(E) (usec)

  18. C(3P) + C2H2 C3(R) C3H C4H C3(E) m/z = 37 m/z = 36

  19. C(3P) + 13C2H2

  20. C(3P) + 13C2H2 C3(R) C3H C4H l-C3(X1g+) + H2(X1g+) m/z = 39 m/z = 38

  21. C(3P) + C2H2/13C2H2 C3H//13C2CH C(3P)  H 13C2C C(3P)  H2

  22. C(3P) + C2H2/13C2H2

  23. Summary

  24. m/z 37 36 39 38 38 36 38 37 36

  25. Ionization Potentials of C3H Isomers Chemical Dynamics Beamline Advanced Light Source C2H2 C3H L. Belau, S. Leone, M. Ahmed, R.I. Kaiser

  26. C6H2 C3H C4H2 C4H

  27. Ionization Potentials IP(l-C3H) = 9.06 eV IP(c-C3H) = 9.66 eV  0.1 eV B. Braams J. Bowman Experiments* IP(l-C3H) = 9.1 eV IP(c-C3H) = 9.6 eV  0.1 eV *L. Belau S. Leone M. Ahmed R.I. Kaiser

  28. Acknowledgements L. Belau S. Leone M. Ahmed B. Braams J. Bowman Y. Guo, F. Zhang, X. Gu

More Related