1 / 36

张量的低秩逼近

张量的低秩逼近. 白敏茹 湖南大学数学与计量经济学院 2014-11-15. 目 录. 张量的基本概念 张量特征值的计算 张量秩 1 逼近和低秩逼近 张量计算软件 复张量的最佳秩 1 逼近和特征值. 1. 张量的基本概念. 张量 :多维数组. 1 阶张量 :向量. 2 阶张量 :矩阵 A =( a ij ). 3 阶张量 :长方体 A =( a ijk ). 1. 张量的基本概念. 张量的秩. 秩 1 张量 :. 秩 1 矩阵 : A = a b T = ( a i b j ). 张量的秩 : 1927 年 Hitchcock.

ckeen
Download Presentation

张量的低秩逼近

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 张量的低秩逼近 白敏茹 湖南大学数学与计量经济学院 2014-11-15

  2. 目 录 • 张量的基本概念 • 张量特征值的计算 • 张量秩1逼近和低秩逼近 • 张量计算软件 • 复张量的最佳秩1逼近和特征值

  3. 1. 张量的基本概念 • 张量:多维数组 1阶张量:向量 2阶张量:矩阵 A=(aij) 3阶张量:长方体 A=(aijk)

  4. 1. 张量的基本概念 • 张量的秩 秩1张量: 秩1矩阵:A=a bT = (aibj) 张量的秩: 1927年 Hitchcock NP-Hard 可计算 n-rank 其中 表示 张量X的mode-k mode

  5. 1. 张量的基本概念 • 张量的低秩逼近:用一个低秩的张量X近似表示张量A 最佳秩R逼近 最佳秩1逼近:R=1 Tucker逼近

  6. 1. 张量的基本概念 • 张量的完备化 低秩张量M部分元素 被观察到,其中 是被观察到的元数的指标集. 张量完备化是指:从所观察到的部分元素来恢复逼近低秩张量M

  7. 1. 张量的基本概念 • 张量的特征值 H-特征值 2005, Qi Z(E)-特征值 B-特征值 2014,Cui, Dai, Nie US-特征值 2014,Ni, Qi, Bai

  8. 2.张量特征值的计算 • 对称非负张量的最大H-特征值的计算: Perron-Frobenius 理论 • Ng, Qi, Zhou 2009, • Chang, Pearson, Zhang 2011, • L. Zhang, L. Qi 2012, • Qi, Q. Yang, Y. Yang 2013 • 对称张量的最大Z-特征值的计算: • The sequential SDPs method [Hu, Huang, Qi 2013] • Sequential subspace projection method[Hao, Cui, Dai. 2014] • Shifted symmetric higher-order power method [Kolda,Mayo 2011] • Jacobian semidefinite relaxations 计算对称张量所有实的B-特征值 • [Cui, Dai, Nie 2014]

  9. 2. 张量特征值的计算 • 对称张量的US-特征值的计算: • Geometric measure of entanglement and U-eigenvalues of tensors, SIAM Journal on Matrix Analysis and Applications,[Ni,Qi,Bai 2014] • Complex Shifted Symmetric higher-order power method [Ni, Bai 2014]

  10. 3. 张量的秩1逼近和低秩逼近 • 张量的秩1逼近 • 最佳实秩1逼近的计算方法: • 交替方向法(ADM)、截断高阶奇异值分解(T-HOSVD)、 • 高阶幂法(HOPM) 和拟牛顿方法等。----局部解,或稳定点 Nie, Wang[2013] :半正定松弛方法 ----全局最优解 • 最佳复秩1逼近的计算方法: Ni, Qi,Bai[2014] :代数方程方法 ----全局最优解

  11. 3. 张量的秩1逼近和低秩逼近 • 张量的低秩逼近 • 最佳秩R逼近的计算方法: • 交替最小平方法(ALS) • 最佳Tucker逼近的计算方法: 高阶奇异值(HOSVD),TUCKALS3,t-SVD

  12. 4. 张量计算软件 • Matlab, Mathematica, Maple都支持张量计算 • Matlab仅支持简单运算,而对于更一般的运算以及稀疏和结构张量,需要添加软件包(如:N-wayToolbox, CuBatch, PLS Toolbox, Tensor Toolbox)才能支持,其中除PLS Toolbox外,都是免费软件。Tensor Toolbox是支持稀疏张量。 • C++语言软件:HUJI Tensor Library (HTL),FTensor, Boost Multidimensional Array Library (Boost.MultiArray) • FORTAN语言软件:The Multilinear Engine

  13. 5. 复张量的最佳秩1逼近和特征值 [A] Guyan Ni, Liqun Qi and Minru Bai, Geometric measure of entanglement and U-eigenvalues of tensors, SIAM Journal on Matrix Analysis and Applications 2014, 35(1): 73-87 [B] Guyan Ni, Minru Bai, Shifted Power Method for computing symmetric complex tensor US-eigenpairs, 2014, submitted.

  14. Basic Definitions 1. A tensor S is called symmetricas its entries s_{i1···id}are invariant under any permutation of their indices. 2. A Z-eigenpair(, u) to a real symmetric tensor S is defined by 2005, Qi uTu 3. An eigenpair(, u) to a real symmetric tensor S is defined by 2011, Kolda and Mayo u*Tu [7] T.G. Kolda and J.R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM Journal on Matrix Analysis and Applications, 32(2011), pp. 1095-1124.

  15. 4. The best rank-one tensor approximation problems Assume that T a d-order real tensor. Denote a rank-one tensor . Then the rank-one approximation problem is to minimizes the least-squares cost function The rank-one tensor is said to be the best real rank-one approximation to tensor T. If T is a symmetric real tensor, is said to be the best real symmetric rank-one approximation.

  16. Basic results • Friedland [2013] and Zhang et al [2012] showed that the best real rank one approximation to a real symmetric tensor, which in principle can be nonsymmetric, can be chosen symmetric. • ud isthe best real rank-one approximation of T if and only if is a Z-eigenvalue of T with the largest absolute value, (,u) is a Z-eigenpair. [Qi 2011, Friedland2013, Zhang et al 2012] [8] S. Friedland, Best rank one approximation of real symmetric tensors can be chosen symmetric, Frontiers of Mathematics in China, 8(2013), pp. 19-40. [9] X. Zhang, C. Ling and L. Qi, The best rank-1 approximation of a symmetric tensor and related spherical optimization problems, SIAM Journal on Matrix Analysis and Applications 33(2012), pp. 806-821.

  17. complex tensors and unitary eigenvalues A d-order complex tensor will be denoted by inner product norm The superscript * denotes the complex conjugate. The superscript Tdenotes transposition. [10] G. Ni, L. Qi and M. Bai, Geometric measure of entanglement and U-eigenvalues of tensors, to appear in SIAM Journal on Matrix Analysis and Applications

  18. For A,B ∈ H, define the inner product and norm as inner product norm A rank-one tensor

  19. unitary eigenvalue (U-eigenvalue) of T

  20. Denote by Sym(d, n) all symmetric d-order n-dimensional tensors Let x ∈Cn. Simply denote the rank-one tensor Define We call a number ∈C a unitary symmetric eigenvalue (US-eigenvalue)of S if and a nonzero vector

  21. The largest |λ| is the entanglement eigenvalue. The corresponding rank-one tensor ⊗di =1x is the closest symmetric separable state. Theorem 1. Assume that complex d-order tensors Then b) all U-eigenvalues are real numbers; c) the US-eigenpair (, x) to a symmetric d-order complex tensor S can also be defined by the following equation system (1) or

  22. 3.1. US-eigenpairs of symmetric tensors Case d=2: Theorem 3. (Takagi’s factorization) Let A ∈Cn×nbe a complex symmetric tensor. Then there exists a unitary matrix U ∈Cn×nsuch that Theorem 4. Let A ∈Cn×nbe a complex symmetric tensor. Let U ∈Cn×nbe a unitary matrix such that Let ei= (0, · · · , 0, 1, 0, · · · , 0)T , i = 1, · · · , n. Then both are US-eigenpairs of A. and The number of distinct US-eigenvalues is at most 2n.

  23. Theorem 5. If 1 = · · · = k > k+1, 1 ≤ k ≤ n, then the set of all US-eigenvectors with respect to 1 is the set of all US-eigenvectors with respect to −λ1 is

  24. 3.2. US-eigenpairs of symmetric tensors Case d  3 • The problem of finding eigenpairs is equivalent to solving a polynomial system [8] S. Friedland, Best rank one approximation of real symmetric tensors can be chosen symmetric, Frontiers of Mathematics in China, 8(2013), pp. 19-40.

  25. 3.2. US-eigenpairs of symmetric tensors Case d  3 Theorem 2. Assume that a complex d-order n-dimension symmetric tensor S ∈ Sym(d, n). Then a) if d ≥3, d is an odd integer, and  0, then the system (1) is equivalent to (2) and the number of US-eigenpairs of (1) is the double of the number of solutions of (2); b) if d ≥3, d is an even integer, and  0, then the system (1) is equivalent to (3) and the number of US-eigenpairs of (1) is equal to the number of solutions of (3).

  26. 3.2. US-eigenpairs of symmetric tensors Case d  3 Theorem 6. Let d ≥ 3, n ≥2 be integers, S ∈ Sym(d, n). If (2) has finitely many solutions, then a) if d is odd , the number of non-zero solutions of (2) is at most b) if d is even, the number of non-zero solutions of (3) is at most c) S has at most distinct nonzero US-eigenvalues; d) for nonzero US-eigenvalues, all the US-eigenpairs of S are as follows where x is a solution of (2).

  27. Note. 1. Let S be the symmetric 2 ×2 ×2 ×2 tensor whose non-zero entries are S1111 = 2, S1112 = −1, S1122 = −1, S1222 = −2, S2222 = 1. The number of non-zero solutions of the equation system (2) is 40 which shows that the bound is tight. Note. 2. Cartwright and Sturmfels (2013) showed that every symmetric tensor has finite E-eigenvalues. At the same time, they indicated that the magnitudes of the eigenvalues with ||x|| = 1 may still be an infinite set (See Example 5.8 of [Cartwright and Sturmfels (2013) ]), which implies that the system S x d−1 = x has infinite non-zero solutions, where S is a symmetric 3 ×3 ×3 tensor whose non-zero entries are S111 = 2, S122 = S212 = S221 = S133 = S313 = S331 = 1. [11] D. Cartwright and B. Sturmfels, The number of eigenvalues of a tensor, Linear Algebra and its Applications, 438(2013), pp. 942-952

  28. Note. 3. Let S be the symmetric 3×3×3 tensor as in Note 2. Then x = for all 0 < a < 1 are non-zero solutions of Sx d−1 = x*. It implies that (2) may have infinite non-zero solutions.

  29. 4. Best symmetric rank-one approximation of symmetric tensors Theorem 7. Let S be a symmetric complex tensor. Let be a US-eigenvalue of S. Then a) − is also a US-eigenvalue of S ; b) G(S) = max. Case d=2 Theorem 8. Let A ∈Cn×nbe a complex symmetric matrix. Then for all x ∈ UEV (A, 1) ∪ UEV (A,− 1) and ∈C with || = 1, (x) ⊗(x) are best symmetric rank-one approximation of A.

  30. Case d ≥3 The best symmetric rank-one approximation problem is to find a unit-norm vector x ∈Cn, such that By Theorem 7, introducing the US-eigenvalue method, Q1 is equivalent to the following problem

  31. Theorem 9. Let S ∈ Sym(d, n). Then a) the best symmetric rank-one approximation problem is equivalent to the following optimization problem rank-one approximation of S for each • The problem of finding eigenpairs is equivalent to solving a polynomial system

  32. Let x = y + z−1, y, z ∈ Rn. Then Q3 is equivalent to the following problem Example 1. Assume that S is a real symmetric tensor with d = 3 and n = 2. Then Q4 is equivalent to the following optimization problem

  33. Table1. US-eigenpairs of S with S111 = 2, S112 = 1, S122 = −1, S222 = 1. The best real rank-one approximation is also the best complex rank-one approximation.

  34. The absolute-value largest of Z-eigenvalues is not its largest US-eigenvalue.

  35. By observing numerical examples, we find the following results: • The best real rank-one approximation is sometimes also the best complex rank-one approximation even if the tensor is not a symmetric nonnegative real tensor, see Table 1. • The absolute-value largest of Z-eigenvalues is sometimes not its largest US-eigenvalue, see Table 2. Question 1: What is the necessary and sufficient condition for the equality of the largest absolute Z-eigenvalue and the largest US-eigenvalue to a real symmetric tensor?

  36. 谢谢大家!

More Related