1 / 27

Jena

Institute of Molecular Biotechnology. Jena. Purine-Pyrimidine Patterns in the Genetic Code and in Restriction Enzyme Recognition Sequences. Swetlana Nikolajewa, Andreas Beyer, Maik Friedel, Jens Hollunder, Thomas Wilhelm. Institute of Molecular Biotechnology, Jena Germany.

Download Presentation

Jena

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Institute of Molecular Biotechnology Jena Purine-Pyrimidine Patterns in the Genetic Code and in Restriction Enzyme Recognition Sequences Swetlana Nikolajewa, Andreas Beyer, Maik Friedel, Jens Hollunder, Thomas Wilhelm Institute of Molecular Biotechnology, Jena Germany

  2. Overview: Purine-Pyrimidine Patterns • Part 1New Classification Scheme of the Genetic code • Part 2Type II Restriction Enzyme Binding Sites

  3. Overview: Genetic Code • Part 1. The purine-pyrimidine scheme of the genetic codes shows • amino-acids patterns and regularities of codons • symmetry characteristics • possible predecessors of our contemporary quaternary triplet code • explanation for the number (22) of tRNA genes in mammalian mitochondrial genome

  4. PuRines vs. PYrimidines G A C T

  5. Purine pairs with Pyrimidine 3 H Bonds 2 H Bonds

  6. The Common Genetic Code Table • 3 nucleobases (triplets) of A, G, C, U code for 20 AAs • 64 possible codons (4x4x4=43) • 3 termination codons: UGA, UAG, UAA • Met (AUG) codon is also the start codon The Common Genetic Code Table contains 64 fields…

  7. CG binds via 3hydrogen bonds in the complementary base pairing AU binds via 2 hydrogen bonds in the complementary base pairing Purine-Pyrimidine Classification Scheme of the Genetic Code • binary representation of nucleobases purines : A, G → 1 pyrimidines: C, U → 0 • 23 = 8 different binary triplets 000 , 001, … ,111each of these has again 8 possibilities, for instance: • 000 stands for three pyrimidines: CCC, CCU, UUC, …, UUU • 111 stands for three purines: GGG, GGA, GAA, …,AAA

  8. Purine-Pyrimidine Table of the Genetic Code Mixedcodons 5 H bonds Codon Strong codons 6 H bonds Mixed codons 5 H bonds Weak codons 4 H bonds 000 ProCC (C/U) Proline SerUC (C/U) Serine LeuCU(C/U) Leucine PheUU(C/U) Phenylalanine SerUC(A/G) Serine LeuUU(A/G) Leucine ProCC(A/G) Proline LeuCU(A/G) Leucine 001 ThrAC(C/U) Threonine Ala GC(C/U) Alanine IleAU(C/U) Isoleucine ValGU(C/U) Valine 100 AlaGC(A/G) Alanine ThrAC(A/G) Threonine ValGU(A/G) Valine 101 Ile/MetAU(A/G) Isoleucine/Methionine ArgCG(C/U) Arginine CysUG(C/U) Cystein 010 HisCA (C/U) Histidine TyrUA(C/U) Tyrosine StopUA(A/G) GlnCA (A/G) Glutamine ArgCG(A/G) Arginine 011 Stop/TrpUG(A/G) Tryptophan AsnAA(C/U) Asparagine GlyGG(C/U) Glycine 110 SerAG(C/U) Serine AspGA(C/U) Asparaticacid GlyGG(A/G) Glycine ArgAG(A/G) Arginine LysAA(A/G) Lysine GluGA(A/G) Glutamaticacid 111 …the new scheme contains the same information in only 32 fields.

  9. Amino Acid Patterns:Polar Requirement of NCN and NUN Codons Mixed 5 hydrogen bonds Codon Strong 6 hydrogen bonds Mixed 5 hydrogen bonds Weak 4 hydrogen bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) PheUU(C/U) ProCC(A/G) SerUC(A/G) 001 LeuUU(A/G) LeuCU(A/G) 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Ile/MetAU(A/G) AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) GlnCA (A/G) ArgCG(A/G) 011 Stop/TrpUG(A/G) AsnAA(C/U) Asparagine GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) Asparaticacid GlyGG(A/G) ArgAG(A/G) LysAA(A/G) Lysine GluGA(A/G) Glutamaticacid 111 C. R. Woese, G. J. Olsen, M. Ibba, D. Söll Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process. MMBR 2000(64) 202-236

  10. Amino Acid Patterns: Hydrophobicity Mixed 5 H-bonds Codon Strong 6 H-bonds Mixed 5 H-bonds Weak 4 H- bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) PheUU(C/U) ProCC(A/G) SerUC(A/G) 001 LeuUU(A/G) LeuCU(A/G) 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Ile/MetAU(A/G) AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) GlnCA (A/G) ArgCG(A/G) 011 Stop/TrpUG(A/G) AsnAA(C/U) GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) GlyGG(A/G) ArgAG(A/G) LysAA(A/G) GluGA(A/G) 111 Kyte&Doolittle, 1982, http://biology-pages.info

  11. Codon-Anticodon Symmetry Mixed 5 H-bonds Codon Strong 6 H-bonds Mixed 5 H-bonds Weak 4 H-bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) PheUU(C/U) ProCC(A/G) SerUC(A/G) 001 LeuUU(A/G) LeuCU(A/G) 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Ile/MetAU(A/G) AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) GlnCA (A/G) ArgCG(A/G) 011 Stop/TrpUG(A/G) AsnAA(C/U) GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) LysAA(A/G) GlyGG(A/G) ArgAG(A/G) GluGA(A/G) 111

  12. Point Symmetry Mixed 5 H-bonds Codon Strong 6 H-bonds Mixed 5 H- bonds Weak 4 H-bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) PheUU(C/U) ProCC(A/G) SerUC(A/G) 001 LeuUU(A/G) LeuCU(A/G) 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Ile/MetAU(A/G) AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) GlnCA (A/G) ArgCG(A/G) 011 Stop/TrpUG(A/G) AsnAA(C/U) GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) GlyGG(A/G) ArgAG(A/G) LysAA(A/G) GluGA(A/G) 111 D. Halitsky Extending the (Hexa-)Rhombic Dodecahedral Model of the Genetic Code: the Code's Four 6-fold Degeneracies and the Ten Orthogonal Projections of the 5-cube as 3-cube. Computer Systems Technology 2004

  13. Codon-Reverse Codon(XYZ↔ZYX) Symmetry Mixed 5 H-bonds Codon Strong 6 H-bonds Mixed 5 H- bonds Weak 4 H-bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) PheUU(C/U) ProCC(A/G) SerUC(A/G) 001 LeuUU(A/G) LeuCU(A/G) 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Ile/MetAU(A/G) AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) GlnCA (A/G) ArgCG(A/G) 011 Stop/TrpUG(A/G) AsnAA(C/U) GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) GlyGG(A/G) ArgAG(A/G) LysAA(A/G) GluGA(A/G) 111

  14. Stop AUC AUC GAU UAG Asp STOP Codon-Reverse Codon(XYZ↔ZYX) Symmetry Asp CUA

  15. CGU, UAC,… Evolution of the Genetic Code • our contemporary code is the quaternary triplet code: 43=64 fields • binary doublet: 41=4 fields CGU, UAC,… • quaternary doublet code:42=16 fields

  16. Evolution: Scenario 1 Mixed 5 H bonds Codon Strong 6 H bonds Mixed 5 H bonds Weak 4 H bonds 000 ProCC (C/U) Proline SerUC (C/U) Serine LeuCU(C/U) Leucine PheUU(C/U) Phenylalanine SerUC(A/G) Serine LeuUU(A/G) Leucine ProCC(A/G) Proline LeuCU(A/G) Leucine 001 ThrAC(C/U) Threonine AlaGC(C/U) Alanine IleAU(C/U) Isoleucine ValGU(C/U) Valine 100 AlaGC(A/G) Alanine ThrAC(A/G) Threonine ValGU(A/G) Valine 101 Ile/MetAU(A/G) Isoleucine/Methionine ArgCG(C/U) Arginine CysUG(C/U) Cystein 010 HisCA (C/U) Histidine TyrUA(C/U) Tyrosine StopUA(A/G) GlnCA (A/G) Glutamine ArgCG(A/G) Arginine 011 Stop/TrpUG(A/G) Tryptophan AsnAA(C/U) Asparagine GlyGG(C/U) Glycine 110 SerAG(C/U) Serine AspGA(C/U) Asparaticacid GlyGG(A/G) Glycine ArgAG(A/G) Arginine LysAA(A/G) Lysine GluGA(A/G) Glutamaticacid 111

  17. Evolution: Scenario 2 Mixed 5 H bonds Codon Strong 6 H bonds Mixed 5 H bonds Weak 4 H bonds 000 ProCC (C/U) Proline SerUC (C/U) Serine LeuCU(C/U) Leucine PheUU(C/U) Phenylalanine SerUC(A/G) Serine LeuUU(A/G) Leucine ProCC(A/G) Proline LeuCU(A/G) Leucine 001 ThrAC(C/U) Threonine AlaGC(C/U) Alanine IleAU(C/U) Isoleucine ValGU(C/U) Valine 100 AlaGC(A/G) Alanine ThrAC(A/G) Threonine ValGU(A/G) Valine 101 Ile/MetAU(A/G) Isoleucine/Methionine ArgCG(C/U) Arginine CysUG(C/U) Cystein 010 HisCA (C/U) Histidine TyrUA(C/U) Tyrosine StopUA(A/G) GlnCA (A/G) Glutamine ArgCG(A/G) Arginine 011 Stop/TrpUG(A/G) Tryptophan AsnAA(C/U) Asparagine GlyGG(C/U) Glycine 110 SerAG(C/U) Serine AspGA(C/U) Asparaticacid GlyGG(A/G) Glycine ArgAG(A/G) Arginine LysAA(A/G) Lysine GluGA(A/G) Glutamaticacid 111

  18. Mitochondrial genomes have several surprising features • genetic code of mitochondria • only22 tRNAs are required for mammalian mitochondrial protein synthesis ?

  19. The Mammalian Mitochondrial Genetic Code Mixed 5 H bonds Codon Strong 6 H bonds Mixed 5 H bonds Weak 4 H bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) PheUU(C/U) ProCC(A/G) SerUC(A/G) 001 LeuUU(A/G) LeuCU(A/G) 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Met/MetAU(A/G) AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) GlnCA (A/G) ArgCG(A/G) 011 Trp /TrpUG(A/G) AsnAA(C/U) GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) LysAA(A/G) GlyGG(A/G) STOPAG(A/G) GluGA(A/G) 111 http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

  20. The Mammalian Mitochondrial Code8 tRNAs for family codons + 14 tRNAs for non-family codons = 22 Mixed 5 H bonds Codon Strong 6 H bonds Mixed 5 H bonds Weak 4 H bonds 000 tRNAPheUU(C/U) tRNALeu1CU tRNASer1UC tRNAProCC tRNALeu2UU(A/G) 001 tRNAValGU tRNAThrAC tRNAIleAU(C/U) tRNAAlaGC 100 101 tRNAMetAU(A/G) tRNAArgCG tRNACysUG (C/U) 010 tRNAHisCA (C/U) tRNATyrUA(C/U) STOPUA(A/G) tRNAGlnCA (A/G) 011 tRNATrpUG (A/G) tRNAAsnAA(C/U) tRNAGlyGG 110 tRNASer2AG (C/U) tRNAAspGA(C/U) tRNALysAA(A/G) STOPAG(A/G) tRNAGluGA(A/G) 111 http://mamit-trna.u-strasbg.fr/2DStructures.html

  21. Part 2. Common Patterns in Type II Restriction Enzyme Binding Sites

  22. Restriction Enzyme (Endonuclease) Restriction enzymes • recognize short specific DNA sequences • enable bacteria to destroy foreign DNA • are useful tools in biotechnology G A A T T C G A A T T C • The most well studied class of REs is type II, which cleave DNA within their recognition sequences • Many recognition sequences are palindromic

  23. Are REase similar in the binding sites? 11↓00 11↓00 1↓11 000 1↓11 000 1↓11 000 Examples from Kimball‘s Biology Pages

  24. How significant is the Pattern RR/YY (11/00)? Asymmetrical (2%) recognition sequences • Frequencies of • dinucleotides • trinucleotides • tetranucleotides coded in three possible coding scheme: • R vs Y (G, A vs C, T) • K vs M (G, T vs C, A) • S vs W (G, C vs A, T) Type II 3726 Symmetrical (98%) recognition sequences In the symmetrical set the most significant dinucleotides are RR (or 11) (p-value <10-63) and YY (or 00) (p-value <10-29) In the asymmetric set RRR, YYY and YYYY are even more significant, but RR and YY also stand out.

  25. Why is the Motif RR..YY preferred? Dinucleotides RR..YY are characterized by: • specific geometrical properties • minimal slide values • strong tilt in the negative direction • positive roll • low stacking energy • stronger H-bond donor and acceptor clusters Figure 1 Example of an interaction between an H-bond donor cluster (resulting from two adjacent purines AA) and an H-bond acceptor.

  26. Outlook • Looking for binary patterns in the genomes • Additional information http://www.imb-jena.de/tsb Thankyouforyourattention!

  27. Purine-Pyrimidine Scheme of the Genetic Code Mixed 5 hydrogen bonds Codon Strong 6 hydrogen bonds Mixed 5 hydrogen bonds Weak 4 hydrogen bonds 000 ProCC (C/U) Proline SerUC (C/U) Serine LeuCU(C/U) Leucine PheUU(C/U) Phenylalanine SerUC(A/G) Serine LeuUU(A/G) Leucine ProCC(A/G) Proline LeuCU(A/G) Leucine 001 ThrAC(C/U) Threonine AlaGC(C/U) Alanine IleAU(C/U) Isoleucine ValGU(C/U) Valine 100 AlaGC(A/G) Alanine ThrAC(A/G) Threonine ValGU(A/G) Valine 101 Ile/MetAU(A/G) Isoleucine/Methionine ArgCG(C/U) Arginine CysUG(C/U) Cystein 010 HisCA (C/U) Histidine TyrUA(C/U) Tyrosine StopUA(A/G) GlnCA (A/G) Glutamine ArgCG(A/G) Arginine 011 Stop/TrpUG(A/G) Tryptophan AsnAA(C/U) Asparagine GlyGG(C/U) Glycine 110 SerAG(C/U) Serine AspGA(C/U) Asparaticacid GlyGG(A/G) Glycine ArgAG(A/G) Arginine LysAA(A/G) Lysine GluGA(A/G) Glutamaticacid 111

More Related