classical conditioning also pavlovian respondent conditioning n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Classical Conditioning (also Pavlovian / Respondent Conditioning) PowerPoint Presentation
Download Presentation
Classical Conditioning (also Pavlovian / Respondent Conditioning)

Loading in 2 Seconds...

  share
play fullscreen
1 / 31
ciel

Classical Conditioning (also Pavlovian / Respondent Conditioning) - PowerPoint PPT Presentation

251 Views
Download Presentation
Classical Conditioning (also Pavlovian / Respondent Conditioning)
An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Classical Conditioning(also Pavlovian / Respondent Conditioning)

  2. PAVLOVIAN PARADIGM unconditional stimulus unconditional response elicits UCR UCS elicits CR CS conditional stimulus conditional response But what does mean?

  3. CS CS CS CS US US US US Temporal Relations and Conditioning Delay Conditioning Trace Conditioning Simultaneous Conditioning Backward Conditioning

  4. BASIC PHENOMENA • ACQUISITION • EXTINCTION • STIMULUS CONTROL

  5. Acquisition

  6. Extinction

  7. Spontaneous Recovery

  8. Stimulus Control

  9. Is key element S-S (CS – UCS) or S-R (CS – UCR) relationship? • Sensory preconditioning • Idea of stimulus substitution

  10. Is key element S-S (CS – UCS) or S-R (CS – UCR) relationship? • Sensory preconditioning • Idea of stimulus substitution

  11. What are the necessary and sufficient conditions for Pavlovian conditioning to occur? • Response Class • Temporal Relations • Contingency

  12. Respondent Contingencies • Standard Procedure • P(UCS|CS) = 1 ; P(UCS|~CS) = 0 • Partial Reinforcement • 0 < P(UCS|CS) < 1 ; P(UCS|~CS) = 0 • Random Control • 0 < P(UCS|CS) = P(UCS|~CS) • Inhibitory CS • 0 < P(UCS|CS) < P(UCS|~CS) Pavlovian Conditioning

  13. Contingency Table UCS ~UCS #UCSCS = A # CS = A + B P(UCS|CS) = A / (A+B) CS B A+B A ~CS D C+D C A+C B+D N |AD - BC| (A+B)(C+D)(A+C)(B+D)  = Pavlovian Conditioning

  14. Staddon’s Data Pavlovian Conditioning

  15. Contingencies and Staddon’s Data SH ~SH = 20/30 = 2/3 = 10/30 = 1/3 = 10/30 = 1/3 = 20/30 = 2/3 P(S) P(~S) P(SH) P(~SH) 10 20 S 10 012 011 10 ~S 10 0 022 021 30 10 20 Pavlovian Conditioning

  16. Contingencies and Staddon’s Data If S and SH were independent (“random control”): P (SH|S) = P (SH) or P (SH  S) = P (SH) P(S) By definition: P (SH|S) = P (SH  S) = #(SH and S) P(S) #S = 10/20 = 1/2 But: P (SH) = 10/30 = 1/3 So: P (SH|S) ≠ P (SH). Also, P (SH  S) ≠ P (SH) P(S) 10/30 = 1/3 ≠ (1/3)(2/3) = 2/9 Pavlovian Conditioning

  17. = X²1df= │011022 – 012021│ • N (011 + 012)(021 + 022)(011 + 021)(012 +022) Recall X² test for independence in contingency table with observed frequencies 0ij rc i=1 j=1  Where the Eij’s are the Expected Frequencies X²1df = (0ij – Eij) ² Eij  For a 2 x 2 Table X²1df = N │011022 – 012021│² (011 + 012)(021 + 022)(011 + 021)(012 +022) Pavlovian Conditioning

  18. For a 2 x 2 Table Χ²1df = N │011022 – 012021│² (011 + 012)(021 + 022)(011 + 021)(012 +022) SH ~SH E11 = (011 + 012)(011 + 021) N E12 = (011 + 012)(012 + 022) N E21 = (021 + 022)(011 + 021) N E22 = (021 + 022)(012 + 022) N S 011 + 012 012 011 021 022 021 + 022 ~S N 012 + 022 011 + 021 Pavlovian Conditioning

  19. X1² = (13.33 – 10)² + (10 - 6.67)² 13.33 6.67 + (10 – 6.67)² + (3.33 -0)² 6.67 3.33 = 7.486 ≈ 7.5 X².95 = 3.84 1df  = │(10(0) – (10)(10) │= 100 = 0.5 (20)(10)(20)(10) (20)(10) ² = 0.25 = X1² / 30, so X1² = 7.5 as above. S and Shock are not independent • For Staddon’s Data, the table is: 011 = 10 E11 = 13.33 012 = 10 E12 = 6.67 20 022 = 0 E22 = 3.33 021 = 10 E21 = 6.67 10 30 10 20 Pavlovian Conditioning

  20. Operant Conditioning

  21. cs S = Rcs Rcs+ Rcs cs cs S = 0.0 S = 0.5 Pavlovian Conditioning

  22. P(UCS|CS) = P(UCS|~CS) = P(UCS~CS) = # (UCS~CS) P(~CS) # ~CS [P(CS) > 0] ~CS E UCSCS UCS~CS ~CS = E – CS = Context P(UCS|CS) = 1- P(~UCS|CS) P(UCS|~CS) = 1- P(~UCS|~CS) ~UCS Pavlovian Conditioning

  23. RESCORLA-WAGNER MODEL

  24. What are some characteristics of a good model? Variables well-described and manipulatable. Accounts for known results and able to predict non-trivial results of new experiments. Dependent variable(s) predicted in at least relative magnitude and direction. Parsimonious (i.e., minimum assumptions for maximum effectiveness).

  25. STEPS IN MODEL BUILDING • IDENTIFICATION: WHAT’S THE QUESTION? • ASSUMPTIONS: WHAT’S IMPORTANT; WHAT’S NOT? • CONSTRUCTION: MATHEMATICAL FORMULATION • ANALYSIS: SOLUTIONS • INTERPRETATION: WHAT DOES IT MEAN? • VALIDATION: DOES IT ACCORD WITH KNOWN DATA? • IMPLEMENTATION: CAN IT PREDICT NEW DATA?

  26. PRINCIPAL THEORETICAL VARIABLE: ASSOCIATIVE STRENGTH, V

  27. RESCORLA-WAGNER MODEL

  28. ASSUMPTIONS 1. When a CS is presented its associative strength, Vcs, may increase (CS+), decrease (CS-), or remain unchanged. 2. The asymptotic strength () of association depends on the magnitude (I) of the UCS:  = f (UCSI). 3. A given UCS can support only a certain level of associative strength, . 4. In a stimulus compound, the total associative strength is the algebraic sum of the associative strength of the components. [ex. T: tone, L: light. VT+L =VT + VL] 5. The change in associative strength, V, on any trial is proportional to the difference between the present associative strength, Vcs, and the asymptotic associative strength, .

  29. Contiguity in R-W Model If P(UCS|CS) = P(UCS|~CS), we really have CS = CS + CTX and ~CS = CTX. Then: P(UCS|CS + CTX) = P(UCS|CTX) V (CS + CTX) = VCS + VCTX (R-W axiom) V CS = V (CS +CTX) = VCS + VCTX but: V CTX = V ~CS so: V (CS + CTX) = V CS + V~CS = 0  No significant conditioning occurs to the CS Pavlovian Conditioning