1 / 29

Системи, редуцируеми до системи с две и три нива: Декомпозиция на Морис-Шор

Системи, редуцируеми до системи с две и три нива: Декомпозиция на Морис-Шор Хаусхолдер трансформация. Декомпозиция на Морис-Шор за системи с две нива. - изроденост на възбудено ниво. Морис-Шор трансформация. - изроденост на основно ниво. Светли състояния. Тъмни състояния.

ciara-white
Download Presentation

Системи, редуцируеми до системи с две и три нива: Декомпозиция на Морис-Шор

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Системи, редуцируеми до системи с две и три нива: Декомпозиция на Морис-Шор Хаусхолдер трансформация

  2. Декомпозиция на Морис-Шор за системи с две нива

  3. -изроденост на възбудено ниво Морис-Шор трансформация -изроденост на основно ниво Светли състояния Тъмни състояния Трансформация на Морис-Шор (МШ) е възможна когато: всички взаимодействия са една и съща функция на времето и когато имат еднакъв детунинг Трансформация на МШсмесва състояния само от едно и също ниво: 1) Основните състояния на системата след трансформацията са суперпозиция само от основните състояния на системата преди МШ трансфомацията 2) Възбудените състояния на системата след трансформацията са суперпозиция само от възбудените състояния на системата преди МШ трансфомацията

  4. -изроденост на възбудено ниво -изроденост на основно ниво Морис-Шор трансформация Светли състояния Тъмнисъстояния

  5. -изроденост на възбудено ниво Имаме уравнението на Шрьодингер За Хамилтониана e матрица, е матрица, -изроденост на основно ниво е матрица Морис-Шор трансформация Матрици на МШ трасформатцията е константнаматрица, е константнаматрица, Уравнение на Шрьодингер в МШ базиса Светли състояния Тъмни състояния

  6. Хамилтониана в МШ базиса Разлагането на H на няколко независими системи с две нива изисква, след премахване на нулевите колони или редове, матрицата M да се редуцира (възможно е пренареждане на елементите)до диагонална матрица и се дефенират така, че да диагонализират и Собствениете стойности на ( ) са неотрицателни Но Матрицатаима същите собствени стойности като и допълнително нулеви собствени стойности

  7. Each of these two-state Hamiltonians has the same detuning But they have different Rabi frequencies It is important for MS transformation that the couplings share the same time dependence and have the same detuning If all couplings share the same time dependence then Thus and are no time dependent If some couplings share different time dependence then Thus and are time dependent Which means that the MS basis changes with time.

  8. The three-level Morris-Shore (MS) transformation A. A. Rangleov, N. V. Vitanov, B. W. Shore Phys. Rev. A 7, (2006)

  9. a a The quasi-two-level case 1) All couplings share the same time dependence 2) The two-photon resonances a-c and b-d are fulfilled Then one can carry out the MS factorization on the new degenerate two-level system, as displayed in the figure Morris-Shore transformation

  10. The three-level Morris-Shore transformation Morris-Shore transformation We search for a transformation that mixes only sublevels of a given level. Reduce the system of three degenerate levels to: several three level problems, several two state problems and possible several dark states.

  11. The Hamiltonian: Schrödinger Equation: Transformation matrix: , and are constant square unitary matrices of dimensions , and respectively Schrödinger Equation in MS basis: The Hamiltonian in MS basis:

  12. The matrices and may have null rows; these correspond to dark states. The desired decomposition of into a set of independent two- or three-state systems requires that, after removing the null rows, and reduce (possibly after an appropriate relabeling) to diagonal matrices. We define the matrix products Hence and are defined by the condition that they diagonalize and respectively. The matrix must, by definition, diagonalize both and . This can only occur if these two matrixes commute,

  13. Special case: Single intermediate state Morris-Shore transformation In case of a , and reduce to scalars and condition hold automatically. Hence for a single intermediate state the MS transformation is always possible.

  14. Extension to N levels The results for the three-level MS transformation are readily extended to N degenerate levels. For each transition n we form the matrixes when n is a odd number and when n is even number then the N-level MS transformation exists if and only if: When the left system is full filled then MS transformation will produce sets of independent nondegenerate N-state systems, (N -1)-state systems, and so on, and a number of uncoupled states, depending on the particular system.

  15. STIRAP between degenerate levels

  16. Morris-Shore transformation Well known three levels lambda and ladder systems. One cane make effective population transfer in them using the STIRAP method.

  17. Morris-Shore transformation Well known three levels lambda and ladder systems. One cane make effective population transfer in them using the STIRAP method.

  18. is degeneracy of final level Morris-Shore transformation is degeneracy of ground level -bright state of ground level -bright state of final level

  19. REFLECTION for students • the vector |y2ñis the reflection of |y1ñ • over the planeP with a normal vector |Jñ: • áJ|Jñ = 1 • áy1|y1ñ = áy2|y2ñ • (|y1ñ - |y2ñ) || |Jñ • unitary operator

  20. A.S. Householder, J. ACM 5, 339 (1958)

  21. Householder Reflection: action on arbitrary matrix produces an upper (lower) triangular matrix by only N-1 operations N(N-1)/2 steps needed with Givens SU(2) rotations

  22. Householder Reflection: action on unitary matrix turns a unitary matrix into a diagonal matrix!!! by only N-1 operations a recipe for synthesis of arbitrary preselected unitaries! N(N-1)/2 steps needed with GivensSU(2) rotations M Reck, A Zeilinger, HJ Bernstein, P Bertani, Phys. Rev. Lett. 73, 58 (1994)

  23. Householder Reflection: action on Hermitian matrix turns a Hermitian matrix into a tri-diagonal matrix!!! reduces any interaction linkage pattern to a nearest-neighbour (chain) linkage AA Rangelov, NVV, BW Shore, PRA 77, 033404 (2008)

  24. Householder Reflection on a Hamiltonian turns a Hermitian matrix into a tri-diagonal matrix!!! reduces any interaction linkage pattern to a nearest-neighbour (chain) linkage AA Rangelov, NVV, BW Shore, PRA 77, 033404 (2008)

  25. Householder Reflection: Three-state loop AA Rangelov, NVV, BW Shore, PRA 77, 033404 (2008)

  26. Householder Reflection: Three-state loop • Applications • chain breaking and two-state subspaces • analytic solutions • creation of superpositions • hidden spectator states • when example: AA Rangelov, NVV, BW Shore, PRA 77, 033404 (2008)

More Related