90 likes | 342 Views
4-2 , 4-3 , 4-4 , 4-14 , 4-16 , 4-18. 经典动力学应用 习题解答. 4-2 证明两个质量相等的小球作非对心弹性碰撞时,若其中之一原先静止,则碰撞后两个小球的速度相互垂直。 解:动能守恒 mv 2 /2 = mv 1 2 /2 + mv 2 2 /2 ( 1 ) 动量守恒 m v = m v 1 + m v 2 ( 2 ) (2) 式两边平方 mv 2 = mv 1 2 + mv 2 2 + 2m v 1 · v 2
E N D
4-2,4-3,4-4,4-14,4-16,4-18 经典动力学应用习题解答
4-2证明两个质量相等的小球作非对心弹性碰撞时,若其中之一原先静止,则碰撞后两个小球的速度相互垂直。4-2证明两个质量相等的小球作非对心弹性碰撞时,若其中之一原先静止,则碰撞后两个小球的速度相互垂直。 解:动能守恒 mv2/2 = mv12/2 + mv22/2 (1) 动量守恒 mv = mv1 + mv2 (2) (2)式两边平方 mv2 = mv12 + mv22 + 2mv1 · v2 → v1 · v2 = 0 → v1 ⊥ v2
4. 3两个质量为 m1和 m2的小球,在一直线 上作完全弹性碰撞,碰撞前两小球的速度分 别为 v10和 v20(同向),试求碰撞过程中两 小球间的最大形变势能。 解:碰撞过程中 m1、m2速度分别为 v1、v2 形变势能为 WP 动量守恒:m1v10+m2v20=m1v1+m2v2 = P (1) 机械能守恒:m1v102/2 + m2v202/2 = m1v12/2+ m2v22/2 +WP (2) 因为 m2v2 = P - m1v1 ,代入(2)则得
WP = m1v102/2 + m2v202/2 - m1v12/2 - m2[(P - m 1 v1)/m 2 ]2/2 求极值: dWP/dv1= - m1v1 +m1(P - m 1 v1)/m 2 = m1[P -(m1+m2)v1]/m2 = 0 所以 v1 = P/(m1+m2) =(m1v10+ m2v20)/(m1+ m2)= v2 故 WPmax = m1v102/2 + m2v202/2 -(m1+ m2)(m1v10+ m2v20)2/(m1+ m2)2/2 WPmax = m1m2(v10- v20)2/ 2(m1+ m2)
解:动量守恒:m1 v10 = m1 v1 + m2 v2 (1) 动能守恒:m1 v102/2= m1 v12/2 + m2 v22/2 (2) (1) v2 =2v10 /(1+ m2/m1) 当 m2/m1 <<1 时,v2max = 2v10 , v1 = (m1 - m2)v10 / (m1 + m2) (3) 4. 4若质量为m1 以速率 v10 运动的物体A与质量为 m2 的静止物体 B 发生对心完全弹性碰撞,如何选择 m2 的大小,使得 m2 在碰撞后具有 ( 1 ) 最大速率,( 2 ) 最大动量,( 3 )最大动能。
(2) p2 =m2v2 =2m1v10 /(1+ m1/m2 )当 m1/m2 <<1 时,p2max = 2m1v10。 (3) Ek2 = m2v2 2/2 = 2m2m12 v102/(m1+ m2) dEk2/dm2 = 0 m2 = m1Ek2max = m1v102/2 或 从m1 v102/2= m1 v12/2 + m2 v22/2 (2) Ek2 最大,要求 m1 v12/2 = 0 v1 = 0 由 (3)式,即 v1 = (m1 - m2)v10 / (m1 + m2) = 0 得 m2 = m1
解:选 x 轴向下为正。 k = mog/ l = 0.0019.80.049 =0.2 N/m =(k/m)1/2 =(0.2/0.008)1/2= 5 rad/s 初始条件:t = 0, xo = 0.01 m, vo = - 0.05 m/s A = (xo2+vo2/2)1/2 = ( 0.012+ 0.052/52)1/2 =0.0141 m tg = - vo /xo = 0.05 /( 5 0.01) = 1.00 =π/4 rad 振动方程: x = 0.0141 cos( 5t +π/4 ) m 4-14有一轻弹簧,下悬质量为1.0 g 的物体时,伸长量为4.9 cm,用这一弹簧和一个质量为8.0 g 的小球构成弹簧振子,将小球由平衡位置向下拉开 1.0cm 后,给予向上的初速度5 cm/s ,试求小球的振动周期及振动方程。
4-16一半径为的匀质圆环悬挂在一根棱尺上,试决定其振动周期。4-16一半径为的匀质圆环悬挂在一根棱尺上,试决定其振动周期。 解:I = mR2 + mR2 = 2mR2 → K2 = 2R2 b = R T = 2π( K2/gb )1/2 = 2π( 2R2/gR )1/2 = 2π( 2R/g )1/2 O
4-18一双原子分子中两个原子之间的相互作用的势能能够相当准确地用莫尔斯势 EP(r) = D{1-exp[-a(r-ro)]}2 来表示,式中和是该分子所特有的常数。 (1)画出该势能的曲线,并找出平衡位置。 (2)试求在低能量下两个原子的相对振动的频率。 解:(1) dEP /dr = 2Da{1-exp[-a(r - ro)]}exp[-a(r-ro) = 2Da{exp[-a(r-ro) -exp[-2a(r - ro)]} = 0 → r = ro (2) k = d2EP /dr2 = 2Da {-a exp[-a(r-ro)+ 2a exp[-2a(r - ro)]} = 2Da2 ω= ( k /μ)1/2 = a ( 2D /μ)1/2 EP r