STATION #1

1 / 13

# STATION #1 - PowerPoint PPT Presentation

Use the following explanation and examples to complete the problems enclosed in this folder. . -. -. +. The rules for multiplication and division are the same. STATION #1. -. -. +. negative. negative. When the signs are DIFFERENT, the answer is always NEGATIVE. -. -. +.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'STATION #1' - chuck

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Use the following explanation and examples to complete the problems enclosed in this folder.

-

-

+

The rules for multiplication and division are the same.

### STATION #1

-

-

+

negative

negative

When the signs are DIFFERENT, the answer is always NEGATIVE.

-

-

+

Multiplying and Dividing Integers

When the signs are the SAME, the answer is always POSITIVE.

positive

positive

1A

1D

2. -122 ÷ 4 x 3 x 24=

2. -2(6)2 ÷ (-12)=

1E

1B

2. 45( 238 ÷ -14 )=

2. [(-4)(-3) ÷ 4 (-6 ÷ 2)]=

1C

1F

2.-16 x(-18 ÷ 9) =

2.  (-10 x-9 )(-10 × -4 )=

Use the following explanation and examples to complete the problems enclosed in this folder.

To subtract fractions, both denominators MUST be the same. Here’s what you do if the denominators are different:

1. You first need to find a number that BOTH denominators can divide into evenly, called a common denominator.

2. Re-write each equivalent fraction using this new denominator

3. Go ahead and subtract ONLY the numerators.

4. If you can not subtract the numerators, you may need to borrow a whole number in the form of the denominator.

Ex. (see example below.)

5. Re-write your answer as a simplified or reduced fraction, if needed.

### STATION #2

SUBTRACTING FRACTIONS

2A

2D

2. A football player advances 2/3 of a yard. A second player in the same team advances 5/4 of a yard. How much more yardage did the second player advance?

2. Uncle Si set a record when he caught a catfish that weighed 97 ¼ pounds. The previous record was 94 9/16 pounds. By how many pounds did Uncle Si beat the previous record?

2E

2B

2. Kristy and William took part in running race. They covered a distance of 5/8 yards and 8/9 yards respectively. Find the distance between these athletes.

2. The road to Camp Allen is 9 1/5 miles long. The distance by boat is 3 ¾ miles. How much less is the distance by boat?

2C

2F

2. Carlos walked 2 ¾ miles on Monday. On Tuesday he walked 1 2/5 miles less than Monday. How far did he walk on Tuesday?

2. The maximum weight for a basketball is 22 9/10 ounces. For a baseball it is 5 ½ ounces and for a tennis ball it is 2 1/16 ounces. How much heavier is a maximum weight basketball than a maximum weight tennis ball?

Use the following explanation and examples to complete the problems enclosed in this folder.

1. Line up the decimal points and add the columns from right to left.

2. Place a decimal point in the answer directly below the other decimal points.

TO SUBTRACT DECIMALS:

1. Line up the decimal points.

2. Subtract the columns from right to left, regrouping if necessary.

3. Place a decimal point in the answer directly below the other decimal points.

### STATION #3

0.64 + 0.39

Line up the decimal points.

0.64

+ 0.39

__________________________

0.64

+ 0.39

__________________________

1.03

3A

3D

2. Ms. Tran bought \$56.12 worth of groceries. However, she had coupons worth \$9.85. How much did Ms. Tran spend on the groceries?

2. Jacob bought a skateboard for \$67.50 and a pair of kneepads for \$9.75. If the sales tax was \$4.64, how much did he spend altogether?

3E

3B

2. In the morning Neftali walked 1.7 kilometers to school. In the afternoon she walked 3.5 kilometers to her grandmother's house, and then 2.6 kilometers home again. How many total kilometers did she walk?

2. A US penny weighs 0.1 oz. The smallest hummingbird on record was 2.24 inches long and weighed 0.056 oz. How much less than a penny did the hummingbird weigh?

3C

3F

2. Marian bought four candy bars at a baseball game. They weighed 1.16 oz., 2 oz., 1.7 oz. and 1.38 oz. How many ounces of candy did Marian buy all together?

2. 380 + 98.6 + 4.25 +209.7 =

3G

3J

After buying some crayons for \$98.99, Douglas has \$9.61 left. How much money did Douglas have to begin with?

4.6432-0.65 =

Samuel gives \$26.94 to Catherine. If Samuel started with \$31.03, how much money does he have left?

2. 6.5154 – 3.6561 =

3K

3H

6.35 + 0.681 + 5.1 =

9.85 + 19.45 – 10.56 =

16.78 - 5.15 – 6.5 =

1. Billie runs daily as part of an exercise plan. On unsay she ran 8.3 miles, on Monday 5.1 miles, on Tuesday 5.75 miles, on Wednesday 5.6 miles, on Thursday 4.25 miles, and 6 miles on Saturday. How many miles did she run this week?

3I

3L

If you have 325.58 in your checking account, and then write a check for 166.73. what is your new balance?

58.65 – 0.346

In a well filled with water, 184.5 liters are removed followed by 128.75 liters and finally 84.5 liters. After these withdrawals, there are 160 liters in the well. How much water did the well originally have?

18.1534 – 5.0435

Adding and subtracting integers can be confusing if you don’t follow these rules………….

• Think of money when you add integers
• Do KCF when it says to subtract integers then think of money

### STATION #4

• Do NOT look at the addition operation, look at the sign in front of the numbers
• Positive means you have \$
• Negative means you owe \$
• For example ……
• 7+ -3=
• This means you have 7\$ but you owe someone 3. If you pay them the 3 you still have 4\$. Having 4\$ means it is positive.

Subtracting Integers

1. KCF which means Keep the first number the same, Change the subraction sign to addition, then Flip the last number to it’s opposite

-3 - -5 =

K C F

So it becomes

-3 + 5 =

this means you

owe 3\$ but you have 5 so after you pay them you still have 2\$

4A

4D

-29 + 39 + -7 – (-11) =

-4 – (-4) + 8 – 8 =

4E

4B

21- (-98) - (-64) =

17 – (-2) + -20 – 6 =

48 -16 – 16+ 12 =

-14 + 44 + -23 =

4C

4F

(-13) + (-78) - 72 =

-25 + -75 - (-50) =

(-27) + (-65) - 50 =

-30 + 40 – 50 + -10 =

Words to know……….

Numerator is also called the top #

And the denominator can be called the bottom #

### STATION #5

• How to do……
• You have to get the bottoms (denominators) the same
• To get the bottoms the same you find the biggest number both bottoms
• go into (called Least Common Multiple) or if that is too hard just multiply the bottoms together
• 3. Whatever you do to the bottom you do to the top (numerator)
• 4. You add the whole #’s and the top #’s but the bottoms stay the same
• 5. Reduce the fraction if possible

5A

5D

2. To make a milk shake, 2 gallons of milk, 1/7 of gallons of vanilla and 3/4 of gallons of fruit juice were required. Find the total gallons of milk shake made out of it.

2. If the sides of an equilateral triangle are 5 7/8 inches long, what is the perimeter.

5E

5B

2. Cameron walked ¾ of a mile on Monday. On Tuesday, he walked 1/8 of a mile, and Wednesday he walked 2/5 of a mile. How far did he walk altogether?

2. To the right, is a chart of the miles Jennifer walked last week. What is the total miles that Jennifer walked?

5C

5F

2. It took Sadai 5 ¾ hours to climb to the top of a mountain. It took 3 ¼ hours to climb down. If she spent 1 ½ hours at the top, how long did the climb take?

1. Paul bought 2 3/5pound of chocolate at Rocky Mountain Chocolate factory. Later, they went to The Sweet Shoppe and he bought 9/11 of a pound more

chocolate. How much chocolate did he buy that day?

To Multiply decimals

TO DO…..

1. Get rid of decimals (put decimal at the end of the # so it looks like a whole #)(move to the right)

2. multiply like whole #’s

3. put decimal back in answer how many places you moved it before multiplying

EX.

2.12

x 3.4

212

x 34

848

+

636

### STATION #6

7.208

Since there were 3 #’s after the decimal in the original problem we move the decimal back 3 places

• To Divide Decimals
• You move the decimal in the outside # (divisor) to the end to be a whole #
• Whatever you do to the outside # you do to the inside # (dividend)
• Bring decimal up to the answer (quotient) then divide like whole #’s

Multiplying and Dividing Decimals

When you move the decimals it becomes this

You move the decimal 2 places on the outside # to become a whole

Number so you then move the decimal 2 places on the inside #

6A

6D

2. Last week(7 days), Maria made \$30.03 for doing her chores. If Leslie made the same amount of money each day, what did Leslie earn each day that she worked?

2. A monthly magazine charges \$48.50 for a one-year subscription. What is the cost for each issue if the magazine is delivered twice a month?

6E

6B

2. Ashley went grocery shopping and her total came to \$20.26. She had a coupon that allowed her to pay 0.87 times her total. How much did Ashley spend at the grocery store?

2. The price of roofing nails is \$0.04 each. If the price marked on a bag of these nails is \$1.48, how many nails are in the bag?

6C

6F

2. Jaquelineis making cookies for the school bake sale. She plans to use a recipe for sugar cookies. The recipe calls for 2 .75 cups of sugar. If Grace triples this recipe, how much sugar will she use?

2. Isaia earned \$620 last week. He earns 7.75/hour. How many hours did he work?