1 / 36

MOLECULAR LINE PROBES OF STAR FORMATION LAWS IN GALAXIES

MOLECULAR LINE PROBES OF STAR FORMATION LAWS IN GALAXIES. Santiago GARCIA-BURILLO Observatorio Astronómico Nacional (OAN)-Spain. MOLECULAR LINE PROBES OF STAR FORMATION LAWS IN IR LUMINOUS GALAXIES. In collaboration with: Almudena Alonso-Herrero (CAB-CSIC)-Spain

christmas
Download Presentation

MOLECULAR LINE PROBES OF STAR FORMATION LAWS IN GALAXIES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MOLECULAR LINE PROBES OF STAR FORMATION LAWS IN GALAXIES Santiago GARCIA-BURILLO Observatorio Astronómico Nacional (OAN)-Spain

  2. MOLECULAR LINE PROBES OF STAR FORMATION LAWS IN IR LUMINOUS GALAXIES In collaboration with: Almudena Alonso-Herrero (CAB-CSIC)-Spain Javier Graciá-Carpio (MPG)-Germany Miguel Pereira-Santaella (CAB-CSIC)-Spain Luis Colina (CAB-CSIC)-Spain Pere Planesas (ALMA)-Chile Santiago Arribas (CAB-CSIC)-Spain

  3. SF Laws: Scaling Relations ρ(SFR) ~ ρgasα <---> ΣSFR ~ ΣgasαIfρ(SFR) ~ ρ / t free fall ~ ρgas1.5 Ifρ(SFR) ~ ρ x Ω ~ ρgas1.5 , in Q~1 disks In theory... Schmidt 1959; Silk 1997; Elmegreen 1997; Kennicutt 1998

  4. SF Laws: Scaling Relations ρ(SFR) ~ ρgasα <---> ΣSFR ~ ΣgasαIfρ(SFR) ~ ρ / t free fall ~ ρgas1.5 Ifρ(SFR) ~ ρ x Ω ~ ρgas1.5 , in Q~1 disks In theory... Schmidt 1959; Silk 1997; Elmegreen 1997; Kennicutt 1998 ΣSFR ?: UV, Hα, Pα, FIR, RC...Σgas ? : H2 (CO, HCN), HI, H2+HI… scales?: global, resolved, ... In practice...

  5. SF Laws: Scaling Relations ρ(SFR) ~ ρgasα <---> ΣSFR ~ ΣgasαIfρ(SFR) ~ ρ / t free fall ~ ρgas1.5 Ifρ(SFR) ~ ρ x Ω ~ ρgas1.5 , in Q~1 disks In theory... Schmidt 1959; Silk 1997; Elmegreen 1997; Kennicutt 1998 ΣSFR ?: UV, Hα, Pα, FIR, RC...Σgas ? : H2 (CO, HCN), HI, H2+HI… scales?: global, resolved, ... In practice... Star Formation Efficiency Power Laws for SFR SFE=SFR/Mgas ΣSFR ~ Σgasα ΣSFR ~ Σgas x Ω

  6. SF Laws: Scaling Relations Kennicutt 1998 Gas tracers: HI + CO(H2)Global fit on 100 galaxies; fit driven (?) by nuclear ‘extreme’ starbursts ΣSFR ~ Σgasα α~1.4 ΣSFR ~ Σgasα α~1.4 ΣSFR ~ Σgas x Ω

  7. SF Laws: Scaling Relations Bigiel et al 2008 Gas tracers: HI+CO(H2) Survey of 18 ‘normal’ SF galaxy disks with sub kpc-scale resolution ΣSFR ~ Σgasα α~1, if gas=H2

  8. SF Laws: Scaling Relations Genzel et al. 2010; see also Daddi et al 2010 A study of SF laws over cosmic time (´normal´ vs´extreme´ galaxies at all redshifts) SFE (mergers) ~ (5-6) x SFE (normal), for a given LCO ΣSFR(mergers) ~ 10 x ΣSFR(normal), for a given Σgas ΣSFR ~ Σgasα α~1.2

  9. SF Laws: ‘normal’ vs ‘extreme’ SF SFE=SFR/Mgas ΣSFR ~ Σgasα Any difference between ‘normal’ galaxies and ‘extreme SB’ if we use HCN as a tracer of Σgas ? HCN lines as a proxy for dense gas->change of SF laws? First studies point to no difference: ΣSFR~Σgasα, α~1 for ´all´ galaxies (e.g., Gao & Solomon 2004)

  10. Star Formation Efficiency: SFEdense ‘normal’ LIRGs+ULIRGs Gao & Solomon 2004 SFE dense=LFIR/LHCN ~ constant as a function of LFIR : from SFG to ´mergers´ However...

  11. Star Formation Efficiency: SFEdense 17 LIGs+ULIGs (Gracia-Carpio et al 2008) LIGs+ULIGs (Gracia-Carpio et al 2008) ‘normal’ LIRGs+ULIRGs Graciá-Carpio et al. 2008 New HCN data suggest higher SFEdense for LIGs and ULIGs

  12. Star Formation Efficiency: SFEdense LIGs+ULIGs (Gracia-Carpio et al 2008) high-z (Greve et al 2006) QSOs (Evans et al 2006) ‘normal’ LIRGs+ULIRGs Graciá-Carpio et al. 2008 New HCN data suggest higher SFEdense for LIGs and ULIGs

  13. Star Formation Efficiency: SFEdense ‘normal’ LIRGs+ULIRGs Graciá-Carpio et al. 2008 SFE dense (LIGs/ULIGs) ~ 3 x SFE dense (‘normal’ SFGs) LFIR~LHCN1.23 LFIR/LHCN constant but ~ LFIRn, n ~ 0.23

  14. SF Laws in LIRGs: a new sample García-Burillo et al. 2010, in prep Need of new HCN data for LIRGs: ´turning´ point in SF laws

  15. SF Laws in LIRGs: a new sample García-Burillo et al. 2010, in prep Need of new HCN data for LIRGs: ´turning´ point in SF lawsHCN / HCO+ IRAM 30m survey of 19 LIRGs: 99+19=28LIRGs extracted from 30 galaxy sample of Alonso-Herrero et al.2006 -30 nearby (v<5200km/s) LIRGs, 80% of RBGS sample -Sizes for dense molecular gas + SF disks < 10” << 30m-beam@88GHz‘Everything’ inside the beam-High-resolution imaging in several SF tracers-HST NICMOS Paα -CAHA + VLT Hα -Spitzer/MIPS 24mμCross-check of SFR values Spatially resolved images of SF: KS laws

  16. Star Formation Efficiency: SFEdense García-Burillo et al. 2010, in prep New data confirm enhanced SFE dense in LIRGs

  17. Star Formation Efficiency: SFEdense García-Burillo et al. 2010, in prep New data SFE dense=LFIR/LHCN constant but ~ LFIRn, n ~ 0.25 (+/-0.03)

  18. KS Laws for Dense Gas García-Burillo et al. 2010, in prep ΣSFR~Σndense , n~0.8 (+/- 0.05) for ‘normal’ galaxies

  19. KS Laws for Dense Gas García-Burillo et al. 2010, in prep ´normal´ vs ´IR luminous´bimodality? ΣSFR~Σndense , n~1.0 (+/- 0.05)for ‘LIRGs/ULIRGs’

  20. KS Laws for Dense Gas García-Burillo et al. 2010, in prep ΣSFR~Σndense , n~1.1 (+/- 0.03)global fit

  21. SF Laws in Galaxies: Bimodality? ´extreme´ SB (mergers)versus ´normal´ SF galaxies ΣSFR(mergers) ~ 10 x ΣSFR(normal), for a given Σgas ΣSFR(mergers) ~ 3 x ΣSFR(normal), for a given Σdense CO(mol. gas) HCN(dense mol. gas) Genzel et al. 2010 García-Burillo et al. 2010, in prep

  22. Conversion Factors: XHCNand SFEdense Graciá-Carpio et al. 2008 Extension of HCN + HCO+ -survey to J=3-2 lines LVG models One phase Two phases [HCN]/[HCO+] > 5-10 in most ULIRGsHCN ‘overabundance’ I nH2=105 cm-3,T=80K, [HCN]/[HCO+] ~103II nH2=104 cm-3,T=25K, [HCN]/[HCO+] ~1[HCN]/[HCO+] ~1 for LIRGs and ULIRGs!HCN ‘overabundance’vanishes! In either case: XHCN(LIRGs) ~ 3-5 x XHCN(ULIRGs)

  23. Conversion Factors: XHCNand SFEdense Graciá-Carpio et al. 2008 XHCN-conversion factor may be 3-5 times lower at high LFIR!!SFEdense=SFR/Mdensechanges by a factor ~3x(3-5) ~10 from ‘normal’ to ‘extreme’

  24. SF models: ‘local’ vs ‘global’ Krumholtz et al. 2009 (K09) HI/H2 fractionProperties of GMCsSFE = SFR ff/tff Analytic model for a ‘universal’ SF law: SF regulated by local processes within clouds: CO+HI SF laws vs model *Good agreement for ‘normal’ SFG*ΣSFR in ‘extreme’ SB underpredicted! Krumholtz et al. 2009

  25. SF models: ‘local’ vs ‘global’ Krumholtz et al. 2007 (K07) K07´s model underpredict SFEdense in ‘extreme’ SBs! Krumholtz et al. 2007 Failure of models focused on local processes suggest SF in ‘extreme’ SBsare driven by galactic-scale dynamical effects

  26. SF models: ‘local’ vs ‘global’ Genzel et al. 2010 SFR ~ Mgas1.4+/- 0.2 x Ω 0.8+/-0.2 CO(mol. gas)

  27. SF models: ‘local’ vs ‘global’ Genzel et al. 2010 SFR ~ Mgas1.4+/- 0.2 x Ω 0.8+/-0.2 CO(mol. gas) HCN ??(dense mol. gas)work in progress…

  28. SF models: ‘local’ vs ‘global’ Genzel et al. 2010 SFR ~ Mgas1.4+/- 0.2 x Ω 0.8+/-0.2 CO(mol. gas) HCN ??(dense mol. gas)work in progress… Two parameter fit makes `bimodality´ disappear Best fit implies power law indexes n ≠ 1 ?! ΣSFR ~ Σgas x Ω Silk 1997; Elmegreen 1997; Kennicutt 1998; Tan 2000; Tasker & Tan 2009

  29. CONCLUSIONS Observational evidence of bimodality in SF laws: ´normal´ SF galaxies (SFG) vs ´extreme´ SB (LIRGs/ULIRGs/SMGs) CO/HCN data suggest SFE and ΣSFR enhanced in ‘extreme’ SB Bimodality in SF laws may disappear if galactic-scale dynamical processes are explicitly included.

  30. CONCLUSIONS Observational evidence of bimodality in SF laws: ´normal´ SF galaxies (SFG) vs ´extreme´ SB (LIRGs/ULIRGs/SMGs) CO/HCN data suggest SFE and ΣSFR enhanced in ‘extreme’ SB Bimodality in SF laws may disappear if galactic-scale dynamical processes are explicitly included. Future directions… Multiline studies of molecular gas (CO, HCN,…,HCO+) -constrain (n(H2), Tk) and I->N(H2) conversion factors Spatially resolved SF laws at ~100pc scales -local ‘normal’ galaxies (NUGA; work in progress…) -local IR luminous galaxies (tbd)

  31. Star Formation Efficiency: SFEdense García-Burillo et al. 2010, in prep SFE dense=LFIR/LHCN constant but ~ LFIRn, n ~ 0.25 (+/-0.03)

  32. The SFE law: from z=0 to high-z galaxies NORMAL + LIGs A higher SFE in ULIGs/HyLIGS?or A contribution from embedded AGNs to LFIR?

  33. SF Laws in LIRGs/ULIRGs ‘normal’ LIRGs+ULIRGs Graciá-Carpio et al. 2008 Different SFEdense imply significant turn upward in KS law at high LFIRΣSFR~Σndense , n~0.9for ‘normal’ galaxies n~1.2for LIRGs/ULIRGs These results confirm predictions of Krumholz & McKee´s SF models

  34. LIRGs: a new sample HST NICMOS Paα images of LIRG sample FOV~19” Alonso-Herrero et al. 2006

  35. SF Laws: Scaling Relations Kennicutt 1998 ΣSFR ~ Σgasα α~1.4 ΣSFR ~ Σgas x Ω

  36. SF Laws: Scaling Relations Bouché et al 2007 ΣSFR ~ Σgasα α~1.7 ΣSFR ~ (Σgas x Ω)1.14

More Related